Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lemona | GIF version |
Description: Lemma for Sasaki implication study. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
u1lemona | ((a →1 b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1 44 | . . 3 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
2 | 1 | ax-r5 38 | . 2 ((a →1 b) ∪ a⊥ ) = ((a⊥ ∪ (a ∩ b)) ∪ a⊥ ) |
3 | or32 82 | . . 3 ((a⊥ ∪ (a ∩ b)) ∪ a⊥ ) = ((a⊥ ∪ a⊥ ) ∪ (a ∩ b)) | |
4 | oridm 110 | . . . 4 (a⊥ ∪ a⊥ ) = a⊥ | |
5 | 4 | ax-r5 38 | . . 3 ((a⊥ ∪ a⊥ ) ∪ (a ∩ b)) = (a⊥ ∪ (a ∩ b)) |
6 | 3, 5 | ax-r2 36 | . 2 ((a⊥ ∪ (a ∩ b)) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
7 | 2, 6 | ax-r2 36 | 1 ((a →1 b) ∪ a⊥ ) = (a⊥ ∪ (a ∩ b)) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-t 41 df-f 42 df-i1 44 |
This theorem is referenced by: u1lemnaa 640 u1lem4 757 |
Copyright terms: Public domain | W3C validator |