QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  wa3 GIF version

Theorem wa3 193
Description: Weak A3. (Contributed by NM, 27-Sep-1997.)
Assertion
Ref Expression
wa3 (((ab) ∪ c) ≡ (a ∪ (bc))) = 1

Proof of Theorem wa3
StepHypRef Expression
1 ax-a3 32 . 2 ((ab) ∪ c) = (a ∪ (bc))
21bi1 118 1 (((ab) ∪ c) ≡ (a ∪ (bc))) = 1
Colors of variables: term
Syntax hints:   = wb 1  tb 5  wo 6  1wt 8
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42
This theorem is referenced by:  ska2  432
  Copyright terms: Public domain W3C validator