Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wa2 | GIF version |
Description: Weak A2. (Contributed by NM, 27-Sep-1997.) |
Ref | Expression |
---|---|
wa2 | ((a ∪ b) ≡ (b ∪ a)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . 2 (a ∪ b) = (b ∪ a) | |
2 | 1 | bi1 118 | 1 ((a ∪ b) ≡ (b ∪ a)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ≡ tb 5 ∪ wo 6 1wt 8 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: wleao 377 wlea 388 ska2 432 woml7 437 wddi4 1110 wdid0id5 1111 wdid0id1 1112 wdid0id2 1113 wdid0id3 1114 wdid0id4 1115 |
Copyright terms: Public domain | W3C validator |