Proof of Theorem ska2
| Step | Hyp | Ref
| Expression |
| 1 | | dfnb 95 |
. . 3
(a ≡ b)⊥ = ((a ∪ b) ∩
(a⊥ ∪ b⊥ )) |
| 2 | | dfnb 95 |
. . . 4
(b ≡ c)⊥ = ((b ∪ c) ∩
(b⊥ ∪ c⊥ )) |
| 3 | | dfb 94 |
. . . 4
(a ≡ c) = ((a ∩
c) ∪ (a⊥ ∩ c⊥ )) |
| 4 | 2, 3 | 2or 72 |
. . 3
((b ≡ c)⊥ ∪ (a ≡ c)) =
(((b ∪ c) ∩ (b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
| 5 | 1, 4 | 2or 72 |
. 2
((a ≡ b)⊥ ∪ ((b ≡ c)⊥ ∪ (a ≡ c))) =
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((b ∪ c) ∩
(b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) |
| 6 | | ax-a3 32 |
. . 3
((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ (((b ∪ c) ∩
(b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) |
| 7 | 6 | ax-r1 35 |
. 2
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((b ∪ c) ∩
(b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) = ((((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
| 8 | | le1 146 |
. . 3
((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) ≤ 1 |
| 9 | | ax-a2 31 |
. . . . . . . 8
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) |
| 10 | | or12 80 |
. . . . . . . 8
(((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) = (((a ∪ b) ∩
a⊥ ) ∪ (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) |
| 11 | | or12 80 |
. . . . . . . . . 10
(((a ∪ b) ∩ a⊥ ) ∪ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) = ((a ∩ c) ∪
(((a ∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) |
| 12 | | or12 80 |
. . . . . . . . . . . 12
(((a ∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) |
| 13 | | ax-a3 32 |
. . . . . . . . . . . 12
(((a⊥ ∩
c⊥ ) ∪ b⊥ ) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = ((a⊥ ∩ c⊥ ) ∪ (b⊥ ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) |
| 14 | | orordi 112 |
. . . . . . . . . . . . 13
(b⊥ ∪
(((a ∪ b) ∩ a⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))) |
| 15 | 14 | lor 70 |
. . . . . . . . . . . 12
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) = ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ )))) |
| 16 | 12, 13, 15 | 3tr 65 |
. . . . . . . . . . 11
(((a ∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ )))) |
| 17 | 16 | lor 70 |
. . . . . . . . . 10
((a ∩ c) ∪ (((a
∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) = ((a ∩ c) ∪
((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))))) |
| 18 | | or12 80 |
. . . . . . . . . . . 12
((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) = ((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) |
| 19 | | le1 146 |
. . . . . . . . . . . . 13
((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) ≤ 1 |
| 20 | | df-t 41 |
. . . . . . . . . . . . . . . 16
1 = ((a ∩ c) ∪ (a
∩ c)⊥
) |
| 21 | | oran3 93 |
. . . . . . . . . . . . . . . . . 18
(a⊥ ∪ c⊥ ) = (a ∩ c)⊥ |
| 22 | 21 | lor 70 |
. . . . . . . . . . . . . . . . 17
((a ∩ c) ∪ (a⊥ ∪ c⊥ )) = ((a ∩ c) ∪
(a ∩ c)⊥ ) |
| 23 | 22 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
((a ∩ c) ∪ (a
∩ c)⊥ ) = ((a ∩ c) ∪
(a⊥ ∪ c⊥ )) |
| 24 | 20, 23 | ax-r2 36 |
. . . . . . . . . . . . . . 15
1 = ((a ∩ c) ∪ (a⊥ ∪ c⊥ )) |
| 25 | | leor 159 |
. . . . . . . . . . . . . . . . 17
a⊥ ≤ (b⊥ ∪ a⊥ ) |
| 26 | | leor 159 |
. . . . . . . . . . . . . . . . 17
c⊥ ≤ (b⊥ ∪ c⊥ ) |
| 27 | 25, 26 | le2or 168 |
. . . . . . . . . . . . . . . 16
(a⊥ ∪ c⊥ ) ≤ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )) |
| 28 | 27 | lelor 166 |
. . . . . . . . . . . . . . 15
((a ∩ c) ∪ (a⊥ ∪ c⊥ )) ≤ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))) |
| 29 | 24, 28 | bltr 138 |
. . . . . . . . . . . . . 14
1 ≤ ((a ∩ c) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))) |
| 30 | 29 | lerr 150 |
. . . . . . . . . . . . 13
1 ≤ ((a⊥ ∩
c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) |
| 31 | 19, 30 | lebi 145 |
. . . . . . . . . . . 12
((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) = 1 |
| 32 | 18, 31 | ax-r2 36 |
. . . . . . . . . . 11
((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) = 1 |
| 33 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . . 19
C (b, (b ∪ a)) =
1 |
| 34 | | wa2 192 |
. . . . . . . . . . . . . . . . . . 19
((b ∪ a) ≡ (a
∪ b)) = 1 |
| 35 | 33, 34 | wcbtr 411 |
. . . . . . . . . . . . . . . . . 18
C (b, (a ∪ b)) =
1 |
| 36 | 35 | wcomcom 414 |
. . . . . . . . . . . . . . . . 17
C ((a ∪ b), b) =
1 |
| 37 | 36 | wcomcom2 415 |
. . . . . . . . . . . . . . . 16
C ((a ∪ b), b⊥ ) = 1 |
| 38 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . 18
C (a, (a ∪ b)) =
1 |
| 39 | 38 | wcomcom 414 |
. . . . . . . . . . . . . . . . 17
C ((a ∪ b), a) =
1 |
| 40 | 39 | wcomcom2 415 |
. . . . . . . . . . . . . . . 16
C ((a ∪ b), a⊥ ) = 1 |
| 41 | 37, 40 | wfh4 426 |
. . . . . . . . . . . . . . 15
((b⊥ ∪
((a ∪ b) ∩ a⊥ )) ≡ ((b⊥ ∪ (a ∪ b))
∩ (b⊥ ∪ a⊥ ))) = 1 |
| 42 | | or12 80 |
. . . . . . . . . . . . . . . . . . 19
(b⊥ ∪ (a ∪ b)) =
(a ∪ (b⊥ ∪ b)) |
| 43 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . 21
(b⊥ ∪ b) = (b ∪
b⊥ ) |
| 44 | | df-t 41 |
. . . . . . . . . . . . . . . . . . . . . 22
1 = (b ∪ b⊥ ) |
| 45 | 44 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . 21
(b ∪ b⊥ ) = 1 |
| 46 | 43, 45 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
(b⊥ ∪ b) = 1 |
| 47 | 46 | lor 70 |
. . . . . . . . . . . . . . . . . . 19
(a ∪ (b⊥ ∪ b)) = (a ∪
1) |
| 48 | | or1 104 |
. . . . . . . . . . . . . . . . . . 19
(a ∪ 1) = 1 |
| 49 | 42, 47, 48 | 3tr 65 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∪ (a ∪ b)) =
1 |
| 50 | 49 | ran 78 |
. . . . . . . . . . . . . . . . 17
((b⊥ ∪
(a ∪ b)) ∩ (b⊥ ∪ a⊥ )) = (1 ∩ (b⊥ ∪ a⊥ )) |
| 51 | | an1r 107 |
. . . . . . . . . . . . . . . . 17
(1 ∩ (b⊥ ∪
a⊥ )) = (b⊥ ∪ a⊥ ) |
| 52 | 50, 51 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b⊥ ∪
(a ∪ b)) ∩ (b⊥ ∪ a⊥ )) = (b⊥ ∪ a⊥ ) |
| 53 | 52 | bi1 118 |
. . . . . . . . . . . . . . 15
(((b⊥ ∪
(a ∪ b)) ∩ (b⊥ ∪ a⊥ )) ≡ (b⊥ ∪ a⊥ )) = 1 |
| 54 | 41, 53 | wr2 371 |
. . . . . . . . . . . . . 14
((b⊥ ∪
((a ∪ b) ∩ a⊥ )) ≡ (b⊥ ∪ a⊥ )) = 1 |
| 55 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . 18
C (b, (b ∪ c)) =
1 |
| 56 | 55 | wcomcom 414 |
. . . . . . . . . . . . . . . . 17
C ((b ∪ c), b) =
1 |
| 57 | 56 | wcomcom2 415 |
. . . . . . . . . . . . . . . 16
C ((b ∪ c), b⊥ ) = 1 |
| 58 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . . 19
C (c, (c ∪ b)) =
1 |
| 59 | | wa2 192 |
. . . . . . . . . . . . . . . . . . 19
((c ∪ b) ≡ (b
∪ c)) = 1 |
| 60 | 58, 59 | wcbtr 411 |
. . . . . . . . . . . . . . . . . 18
C (c, (b ∪ c)) =
1 |
| 61 | 60 | wcomcom 414 |
. . . . . . . . . . . . . . . . 17
C ((b ∪ c), c) =
1 |
| 62 | 61 | wcomcom2 415 |
. . . . . . . . . . . . . . . 16
C ((b ∪ c), c⊥ ) = 1 |
| 63 | 57, 62 | wfh4 426 |
. . . . . . . . . . . . . . 15
((b⊥ ∪
((b ∪ c) ∩ c⊥ )) ≡ ((b⊥ ∪ (b ∪ c))
∩ (b⊥ ∪ c⊥ ))) = 1 |
| 64 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . 19
(b⊥ ∪ (b ∪ c)) =
((b ∪ c) ∪ b⊥ ) |
| 65 | | or32 82 |
. . . . . . . . . . . . . . . . . . 19
((b ∪ c) ∪ b⊥ ) = ((b ∪ b⊥ ) ∪ c) |
| 66 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . 20
((b ∪ b⊥ ) ∪ c) = (c ∪
(b ∪ b⊥ )) |
| 67 | 45 | lor 70 |
. . . . . . . . . . . . . . . . . . . 20
(c ∪ (b ∪ b⊥ )) = (c ∪ 1) |
| 68 | | or1 104 |
. . . . . . . . . . . . . . . . . . . 20
(c ∪ 1) = 1 |
| 69 | 66, 67, 68 | 3tr 65 |
. . . . . . . . . . . . . . . . . . 19
((b ∪ b⊥ ) ∪ c) = 1 |
| 70 | 64, 65, 69 | 3tr 65 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∪ (b ∪ c)) =
1 |
| 71 | 70 | ran 78 |
. . . . . . . . . . . . . . . . 17
((b⊥ ∪
(b ∪ c)) ∩ (b⊥ ∪ c⊥ )) = (1 ∩ (b⊥ ∪ c⊥ )) |
| 72 | | an1r 107 |
. . . . . . . . . . . . . . . . 17
(1 ∩ (b⊥ ∪
c⊥ )) = (b⊥ ∪ c⊥ ) |
| 73 | 71, 72 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b⊥ ∪
(b ∪ c)) ∩ (b⊥ ∪ c⊥ )) = (b⊥ ∪ c⊥ ) |
| 74 | 73 | bi1 118 |
. . . . . . . . . . . . . . 15
(((b⊥ ∪
(b ∪ c)) ∩ (b⊥ ∪ c⊥ )) ≡ (b⊥ ∪ c⊥ )) = 1 |
| 75 | 63, 74 | wr2 371 |
. . . . . . . . . . . . . 14
((b⊥ ∪
((b ∪ c) ∩ c⊥ )) ≡ (b⊥ ∪ c⊥ )) = 1 |
| 76 | 54, 75 | w2or 372 |
. . . . . . . . . . . . 13
(((b⊥ ∪
((a ∪ b) ∩ a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))) ≡ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))) = 1 |
| 77 | 76 | wlor 368 |
. . . . . . . . . . . 12
(((a⊥ ∩
c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ )))) ≡ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) = 1 |
| 78 | 77 | wlor 368 |
. . . . . . . . . . 11
(((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))))) ≡
((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))))) = 1 |
| 79 | 32, 78 | wwbmpr 206 |
. . . . . . . . . 10
((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))))) =
1 |
| 80 | 11, 17, 79 | 3tr 65 |
. . . . . . . . 9
(((a ∪ b) ∩ a⊥ ) ∪ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) =
1 |
| 81 | | wa3 193 |
. . . . . . . . . . 11
((((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ ((a ∩ c) ∪
((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))))) = 1 |
| 82 | | ax-a3 32 |
. . . . . . . . . . . . . . 15
(((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ∪ ((b
∪ c) ∩ c⊥ )) = ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) |
| 83 | 82 | ax-r1 35 |
. . . . . . . . . . . . . 14
((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) = (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ∪ ((b
∪ c) ∩ c⊥ )) |
| 84 | 83 | bi1 118 |
. . . . . . . . . . . . 13
(((a⊥ ∩
c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ∪ ((b
∪ c) ∩ c⊥ ))) = 1 |
| 85 | | ancom 74 |
. . . . . . . . . . . . . . . . 17
(b⊥ ∩
((a ∪ b) ∪ (b
∪ c))) = (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ ) |
| 86 | 85 | lor 70 |
. . . . . . . . . . . . . . . 16
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) = ((a⊥ ∩ c⊥ ) ∪ (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ )) |
| 87 | 86 | bi1 118 |
. . . . . . . . . . . . . . 15
(((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ≡ ((a⊥ ∩ c⊥ ) ∪ (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ ))) = 1 |
| 88 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . . . . 21
C ((a ∪ c), ((a ∪
c) ∪ b)) = 1 |
| 89 | | orordir 113 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a ∪ c) ∪ b) =
((a ∪ b) ∪ (c
∪ b)) |
| 90 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(c ∪ b) = (b ∪
c) |
| 91 | 90 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a ∪ b) ∪ (c
∪ b)) = ((a ∪ b) ∪
(b ∪ c)) |
| 92 | 89, 91 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . 22
((a ∪ c) ∪ b) =
((a ∪ b) ∪ (b
∪ c)) |
| 93 | 92 | bi1 118 |
. . . . . . . . . . . . . . . . . . . . 21
(((a ∪ c) ∪ b)
≡ ((a ∪ b) ∪ (b
∪ c))) = 1 |
| 94 | 88, 93 | wcbtr 411 |
. . . . . . . . . . . . . . . . . . . 20
C ((a ∪ c), ((a ∪
b) ∪ (b ∪ c))) =
1 |
| 95 | 94 | wcomcom 414 |
. . . . . . . . . . . . . . . . . . 19
C (((a ∪ b) ∪ (b
∪ c)), (a ∪ c)) =
1 |
| 96 | 95 | wcomcom2 415 |
. . . . . . . . . . . . . . . . . 18
C (((a ∪ b) ∪ (b
∪ c)), (a ∪ c)⊥ ) = 1 |
| 97 | | ska10 238 |
. . . . . . . . . . . . . . . . . 18
((a ∪ c)⊥ ≡ (a⊥ ∩ c⊥ )) = 1 |
| 98 | 96, 97 | wcbtr 411 |
. . . . . . . . . . . . . . . . 17
C (((a ∪ b) ∪ (b
∪ c)), (a⊥ ∩ c⊥ )) = 1 |
| 99 | 35, 55 | wcom2or 427 |
. . . . . . . . . . . . . . . . . . 19
C (b, ((a ∪ b) ∪
(b ∪ c))) = 1 |
| 100 | 99 | wcomcom 414 |
. . . . . . . . . . . . . . . . . 18
C (((a ∪ b) ∪ (b
∪ c)), b) = 1 |
| 101 | 100 | wcomcom2 415 |
. . . . . . . . . . . . . . . . 17
C (((a ∪ b) ∪ (b
∪ c)), b⊥ ) = 1 |
| 102 | 98, 101 | wfh4 426 |
. . . . . . . . . . . . . . . 16
(((a⊥ ∩
c⊥ ) ∪ (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ )) ≡ (((a⊥ ∩ c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ ))) = 1 |
| 103 | | le1 146 |
. . . . . . . . . . . . . . . . . . . 20
((a⊥ ∩ c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ≤ 1 |
| 104 | | df-t 41 |
. . . . . . . . . . . . . . . . . . . . . 22
1 = ((a⊥ ∩
c⊥ ) ∪ (a⊥ ∩ c⊥ )⊥
) |
| 105 | | oran 87 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(a ∪ c) = (a⊥ ∩ c⊥
)⊥ |
| 106 | 105 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a⊥ ∩ c⊥ )⊥ = (a ∪ c) |
| 107 | 106 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . 22
((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ )⊥ ) =
((a⊥ ∩ c⊥ ) ∪ (a ∪ c)) |
| 108 | 104, 107 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . 21
1 = ((a⊥ ∩
c⊥ ) ∪ (a ∪ c)) |
| 109 | | leo 158 |
. . . . . . . . . . . . . . . . . . . . . . 23
a ≤ (a ∪ b) |
| 110 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . . . 23
c ≤ (b ∪ c) |
| 111 | 109, 110 | le2or 168 |
. . . . . . . . . . . . . . . . . . . . . 22
(a ∪ c) ≤ ((a
∪ b) ∪ (b ∪ c)) |
| 112 | 111 | lelor 166 |
. . . . . . . . . . . . . . . . . . . . 21
((a⊥ ∩ c⊥ ) ∪ (a ∪ c)) ≤
((a⊥ ∩ c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) |
| 113 | 108, 112 | bltr 138 |
. . . . . . . . . . . . . . . . . . . 20
1 ≤ ((a⊥ ∩
c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) |
| 114 | 103, 113 | lebi 145 |
. . . . . . . . . . . . . . . . . . 19
((a⊥ ∩ c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) = 1 |
| 115 | 114 | ran 78 |
. . . . . . . . . . . . . . . . . 18
(((a⊥ ∩
c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = (1 ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) |
| 116 | | an1r 107 |
. . . . . . . . . . . . . . . . . 18
(1 ∩ ((a⊥ ∩
c⊥ ) ∪ b⊥ )) = ((a⊥ ∩ c⊥ ) ∪ b⊥ ) |
| 117 | 115, 116 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(((a⊥ ∩
c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = ((a⊥ ∩ c⊥ ) ∪ b⊥ ) |
| 118 | 117 | bi1 118 |
. . . . . . . . . . . . . . . 16
((((a⊥ ∩
c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) ≡ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = 1 |
| 119 | 102, 118 | wr2 371 |
. . . . . . . . . . . . . . 15
(((a⊥ ∩
c⊥ ) ∪ (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ )) ≡ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = 1 |
| 120 | 87, 119 | wr2 371 |
. . . . . . . . . . . . . 14
(((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ≡ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = 1 |
| 121 | 120 | wr5-2v 366 |
. . . . . . . . . . . . 13
((((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ∪ ((b
∪ c) ∩ c⊥ )) ≡ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) =
1 |
| 122 | 84, 121 | wr2 371 |
. . . . . . . . . . . 12
(((a⊥ ∩
c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) =
1 |
| 123 | 122 | wlor 368 |
. . . . . . . . . . 11
(((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) ≡ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) =
1 |
| 124 | 81, 123 | wr2 371 |
. . . . . . . . . 10
((((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) =
1 |
| 125 | 124 | wlor 368 |
. . . . . . . . 9
((((a ∪ b) ∩ a⊥ ) ∪ (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) ≡ (((a ∪ b) ∩
a⊥ ) ∪ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))))) =
1 |
| 126 | 80, 125 | wwbmpr 206 |
. . . . . . . 8
(((a ∪ b) ∩ a⊥ ) ∪ (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) = 1 |
| 127 | 9, 10, 126 | 3tr 65 |
. . . . . . 7
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = 1 |
| 128 | 35 | wcomcom3 416 |
. . . . . . . . . . 11
C (b⊥ ,
(a ∪ b)) = 1 |
| 129 | 55 | wcomcom3 416 |
. . . . . . . . . . 11
C (b⊥ ,
(b ∪ c)) = 1 |
| 130 | 128, 129 | wfh1 423 |
. . . . . . . . . 10
((b⊥ ∩
((a ∪ b) ∪ (b
∪ c))) ≡ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))) =
1 |
| 131 | 130 | wr5-2v 366 |
. . . . . . . . 9
(((b⊥ ∩
((a ∪ b) ∪ (b
∪ c))) ∪ ((b ∪ c) ∩
c⊥ )) ≡ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) = 1 |
| 132 | 131 | wlor 368 |
. . . . . . . 8
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ (((a ∪ b) ∩
a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ )))) = 1 |
| 133 | 132 | wr5-2v 366 |
. . . . . . 7
(((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) ≡ ((((a ∪ b) ∩
a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) = 1 |
| 134 | 127, 133 | wwbmp 205 |
. . . . . 6
((((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = 1 |
| 135 | 134 | ax-r1 35 |
. . . . 5
1 = ((((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
| 136 | | ax-a3 32 |
. . . . . . . 8
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c))))
∪ ((b ∪ c) ∩ c⊥ )) = (((a ∪ b) ∩
a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) |
| 137 | 136 | ax-r1 35 |
. . . . . . 7
(((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) = ((((a ∪ b) ∩
a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c))))
∪ ((b ∪ c) ∩ c⊥ )) |
| 138 | | ax-a3 32 |
. . . . . . . . 9
((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c))) =
(((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))) |
| 139 | 138 | ax-r1 35 |
. . . . . . . 8
(((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))) =
((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c))) |
| 140 | 139 | ax-r5 38 |
. . . . . . 7
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c))))
∪ ((b ∪ c) ∩ c⊥ )) = (((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ )) |
| 141 | | ax-a3 32 |
. . . . . . 7
(((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ )) = ((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) |
| 142 | 137, 140,
141 | 3tr 65 |
. . . . . 6
(((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) = ((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) |
| 143 | 142 | ax-r5 38 |
. . . . 5
((((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
| 144 | 135, 143 | ax-r2 36 |
. . . 4
1 = (((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
| 145 | | ancom 74 |
. . . . . . . 8
(b⊥ ∩ (a ∪ b)) =
((a ∪ b) ∩ b⊥ ) |
| 146 | 145 | lor 70 |
. . . . . . 7
(((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b))) =
(((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩
b⊥ )) |
| 147 | | ledi 174 |
. . . . . . 7
(((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩
b⊥ )) ≤ ((a ∪ b) ∩
(a⊥ ∪ b⊥ )) |
| 148 | 146, 147 | bltr 138 |
. . . . . 6
(((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
≤ ((a ∪ b) ∩ (a⊥ ∪ b⊥ )) |
| 149 | | ancom 74 |
. . . . . . . 8
(b⊥ ∩ (b ∪ c)) =
((b ∪ c) ∩ b⊥ ) |
| 150 | 149 | ax-r5 38 |
. . . . . . 7
((b⊥ ∩
(b ∪ c)) ∪ ((b
∪ c) ∩ c⊥ )) = (((b ∪ c) ∩
b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )) |
| 151 | | ledi 174 |
. . . . . . 7
(((b ∪ c) ∩ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )) ≤ ((b ∪ c) ∩
(b⊥ ∪ c⊥ )) |
| 152 | 150, 151 | bltr 138 |
. . . . . 6
((b⊥ ∩
(b ∪ c)) ∪ ((b
∪ c) ∩ c⊥ )) ≤ ((b ∪ c) ∩
(b⊥ ∪ c⊥ )) |
| 153 | 148, 152 | le2or 168 |
. . . . 5
((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) ≤ (((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) |
| 154 | 153 | leror 152 |
. . . 4
(((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) ≤ ((((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
| 155 | 144, 154 | bltr 138 |
. . 3
1 ≤ ((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
| 156 | 8, 155 | lebi 145 |
. 2
((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = 1 |
| 157 | 5, 7, 156 | 3tr 65 |
1
((a ≡ b)⊥ ∪ ((b ≡ c)⊥ ∪ (a ≡ c))) =
1 |