Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wql2lem | GIF version |
Description: Classical implication inferred from Dishkant implication. (Contributed by NM, 6-Dec-1998.) |
Ref | Expression |
---|---|
wql2lem.1 | (a →2 b) = 1 |
Ref | Expression |
---|---|
wql2lem | (a⊥ ∪ b) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le1 146 | . 2 (a⊥ ∪ b) ≤ 1 | |
2 | df-i2 45 | . . . 4 (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) | |
3 | wql2lem.1 | . . . 4 (a →2 b) = 1 | |
4 | ax-a2 31 | . . . 4 (b ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ b) | |
5 | 2, 3, 4 | 3tr2 64 | . . 3 1 = ((a⊥ ∩ b⊥ ) ∪ b) |
6 | lea 160 | . . . 4 (a⊥ ∩ b⊥ ) ≤ a⊥ | |
7 | 6 | leror 152 | . . 3 ((a⊥ ∩ b⊥ ) ∪ b) ≤ (a⊥ ∪ b) |
8 | 5, 7 | bltr 138 | . 2 1 ≤ (a⊥ ∪ b) |
9 | 1, 8 | lebi 145 | 1 (a⊥ ∪ b) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: wql2lem3 290 |
Copyright terms: Public domain | W3C validator |