Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > wql2lem3 | GIF version |
Description: Lemma for →2 WQL axiom. (Contributed by NM, 6-Dec-1998.) |
Ref | Expression |
---|---|
wql2lem3.1 | (a →2 b) = 1 |
Ref | Expression |
---|---|
wql2lem3 | ((a ∩ b⊥ ) →2 a⊥ ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i2 45 | . 2 ((a ∩ b⊥ ) →2 a⊥ ) = (a⊥ ∪ ((a ∩ b⊥ )⊥ ∩ a⊥ ⊥ )) | |
2 | oran2 92 | . . . . . 6 (a⊥ ∪ b) = (a ∩ b⊥ )⊥ | |
3 | 2 | ax-r1 35 | . . . . 5 (a ∩ b⊥ )⊥ = (a⊥ ∪ b) |
4 | 3 | ran 78 | . . . 4 ((a ∩ b⊥ )⊥ ∩ a⊥ ⊥ ) = ((a⊥ ∪ b) ∩ a⊥ ⊥ ) |
5 | ancom 74 | . . . 4 ((a⊥ ∪ b) ∩ a⊥ ⊥ ) = (a⊥ ⊥ ∩ (a⊥ ∪ b)) | |
6 | 4, 5 | ax-r2 36 | . . 3 ((a ∩ b⊥ )⊥ ∩ a⊥ ⊥ ) = (a⊥ ⊥ ∩ (a⊥ ∪ b)) |
7 | 6 | lor 70 | . 2 (a⊥ ∪ ((a ∩ b⊥ )⊥ ∩ a⊥ ⊥ )) = (a⊥ ∪ (a⊥ ⊥ ∩ (a⊥ ∪ b))) |
8 | wql2lem3.1 | . . . 4 (a →2 b) = 1 | |
9 | 8 | wql2lem 288 | . . 3 (a⊥ ∪ b) = 1 |
10 | omlem2 128 | . . 3 ((a⊥ ∪ b)⊥ ∪ (a⊥ ∪ (a⊥ ⊥ ∩ (a⊥ ∪ b)))) = 1 | |
11 | 9, 10 | skr0 242 | . 2 (a⊥ ∪ (a⊥ ⊥ ∩ (a⊥ ∪ b))) = 1 |
12 | 1, 7, 11 | 3tr 65 | 1 ((a ∩ b⊥ ) →2 a⊥ ) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |