ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absmulgcd Unicode version

Theorem absmulgcd 10597
Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
absmulgcd  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( abs `  ( K  x.  ( M  gcd  N ) ) ) )

Proof of Theorem absmulgcd
StepHypRef Expression
1 gcdcl 10549 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
2 nn0re 8400 . . . . . 6  |-  ( ( M  gcd  N )  e.  NN0  ->  ( M  gcd  N )  e.  RR )
3 nn0ge0 8416 . . . . . 6  |-  ( ( M  gcd  N )  e.  NN0  ->  0  <_ 
( M  gcd  N
) )
42, 3absidd 10238 . . . . 5  |-  ( ( M  gcd  N )  e.  NN0  ->  ( abs `  ( M  gcd  N
) )  =  ( M  gcd  N ) )
51, 4syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( M  gcd  N ) )  =  ( M  gcd  N ) )
65oveq2d 5580 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
763adant1 957 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
8 zcn 8473 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  CC )
91nn0cnd 8446 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  CC )
10 absmul 10140 . . . 4  |-  ( ( K  e.  CC  /\  ( M  gcd  N )  e.  CC )  -> 
( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K )  x.  ( abs `  ( M  gcd  N ) ) ) )
118, 9, 10syl2an 283 . . 3  |-  ( ( K  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K )  x.  ( abs `  ( M  gcd  N ) ) ) )
12113impb 1135 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( K  x.  ( M  gcd  N ) ) )  =  ( ( abs `  K
)  x.  ( abs `  ( M  gcd  N
) ) ) )
13 zcn 8473 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 zcn 8473 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  CC )
15 absmul 10140 . . . . . . 7  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( abs `  ( K  x.  M )
)  =  ( ( abs `  K )  x.  ( abs `  M
) ) )
16 absmul 10140 . . . . . . 7  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( abs `  ( K  x.  N )
)  =  ( ( abs `  K )  x.  ( abs `  N
) ) )
1715, 16oveqan12d 5583 . . . . . 6  |-  ( ( ( K  e.  CC  /\  M  e.  CC )  /\  ( K  e.  CC  /\  N  e.  CC ) )  -> 
( ( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
18173impdi 1225 . . . . 5  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
198, 13, 14, 18syl3an 1212 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( ( abs `  K )  x.  ( abs `  M ) )  gcd  ( ( abs `  K )  x.  ( abs `  N ) ) ) )
20 zmulcl 8521 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
21 zmulcl 8521 . . . . . 6  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  e.  ZZ )
22 gcdabs 10570 . . . . . 6  |-  ( ( ( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( abs `  ( K  x.  M
) )  gcd  ( abs `  ( K  x.  N ) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N
) ) )
2320, 21, 22syl2an 283 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
24233impdi 1225 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  ( K  x.  M )
)  gcd  ( abs `  ( K  x.  N
) ) )  =  ( ( K  x.  M )  gcd  ( K  x.  N )
) )
25 nn0abscl 10156 . . . . 5  |-  ( K  e.  ZZ  ->  ( abs `  K )  e. 
NN0 )
26 zabscl 10157 . . . . 5  |-  ( M  e.  ZZ  ->  ( abs `  M )  e.  ZZ )
27 zabscl 10157 . . . . 5  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  ZZ )
28 mulgcd 10596 . . . . 5  |-  ( ( ( abs `  K
)  e.  NN0  /\  ( abs `  M )  e.  ZZ  /\  ( abs `  N )  e.  ZZ )  ->  (
( ( abs `  K
)  x.  ( abs `  M ) )  gcd  ( ( abs `  K
)  x.  ( abs `  N ) ) )  =  ( ( abs `  K )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) ) )
2925, 26, 27, 28syl3an 1212 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( abs `  K
)  x.  ( abs `  M ) )  gcd  ( ( abs `  K
)  x.  ( abs `  N ) ) )  =  ( ( abs `  K )  x.  (
( abs `  M
)  gcd  ( abs `  N ) ) ) )
3019, 24, 293eqtr3d 2123 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( ( abs `  K
)  x.  ( ( abs `  M )  gcd  ( abs `  N
) ) ) )
31 gcdabs 10570 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
32313adant1 957 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  M
)  gcd  ( abs `  N ) )  =  ( M  gcd  N
) )
3332oveq2d 5580 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( abs `  K
)  x.  ( ( abs `  M )  gcd  ( abs `  N
) ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
3430, 33eqtrd 2115 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( ( abs `  K
)  x.  ( M  gcd  N ) ) )
357, 12, 343eqtr4rd 2126 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  gcd  ( K  x.  N ) )  =  ( abs `  ( K  x.  ( M  gcd  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   ` cfv 4953  (class class class)co 5564   CCcc 7077    x. cmul 7084   NN0cn0 8391   ZZcz 8468   abscabs 10068    gcd cgcd 10529
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358  ax-cnex 7165  ax-resscn 7166  ax-1cn 7167  ax-1re 7168  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-mulrcl 7173  ax-addcom 7174  ax-mulcom 7175  ax-addass 7176  ax-mulass 7177  ax-distr 7178  ax-i2m1 7179  ax-0lt1 7180  ax-1rid 7181  ax-0id 7182  ax-rnegex 7183  ax-precex 7184  ax-cnre 7185  ax-pre-ltirr 7186  ax-pre-ltwlin 7187  ax-pre-lttrn 7188  ax-pre-apti 7189  ax-pre-ltadd 7190  ax-pre-mulgt0 7191  ax-pre-mulext 7192  ax-arch 7193  ax-caucvg 7194
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-if 3370  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-po 4080  df-iso 4081  df-iord 4150  df-on 4152  df-ilim 4153  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-frec 6061  df-sup 6492  df-pnf 7253  df-mnf 7254  df-xr 7255  df-ltxr 7256  df-le 7257  df-sub 7384  df-neg 7385  df-reap 7778  df-ap 7785  df-div 7864  df-inn 8143  df-2 8201  df-3 8202  df-4 8203  df-n0 8392  df-z 8469  df-uz 8737  df-q 8822  df-rp 8852  df-fz 9142  df-fzo 9266  df-fl 9388  df-mod 9441  df-iseq 9558  df-iexp 9609  df-cj 9914  df-re 9915  df-im 9916  df-rsqrt 10069  df-abs 10070  df-dvds 10388  df-gcd 10530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator