![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantru | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biantru.1 |
![]() ![]() |
Ref | Expression |
---|---|
biantru |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 |
. 2
![]() ![]() | |
2 | iba 294 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm4.71 381 mpbiran2 883 isset 2606 rexcom4b 2625 eueq 2764 ssrabeq 3081 a9evsep 3908 pwunim 4049 elvv 4428 elvvv 4429 resopab 4682 funfn 4961 dffn2 5078 dffn3 5084 dffn4 5143 fsn 5367 ac6sfi 6431 |
Copyright terms: Public domain | W3C validator |