ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcncf Unicode version

Theorem climcncf 12740
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
climcncf.1  |-  Z  =  ( ZZ>= `  M )
climcncf.2  |-  ( ph  ->  M  e.  ZZ )
climcncf.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
climcncf.5  |-  ( ph  ->  G : Z --> A )
climcncf.6  |-  ( ph  ->  G  ~~>  D )
climcncf.7  |-  ( ph  ->  D  e.  A )
Assertion
Ref Expression
climcncf  |-  ( ph  ->  ( F  o.  G
)  ~~>  ( F `  D ) )

Proof of Theorem climcncf
Dummy variables  y  z  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcncf.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 climcncf.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climcncf.7 . 2  |-  ( ph  ->  D  e.  A )
4 climcncf.4 . . . . 5  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 12733 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 14 . . . 4  |-  ( ph  ->  F : A --> B )
76ffvelrnda 5555 . . 3  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  B )
8 cncfrss2 12732 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
94, 8syl 14 . . . 4  |-  ( ph  ->  B  C_  CC )
109sselda 3097 . . 3  |-  ( (
ph  /\  ( F `  z )  e.  B
)  ->  ( F `  z )  e.  CC )
117, 10syldan 280 . 2  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  CC )
12 climcncf.6 . 2  |-  ( ph  ->  G  ~~>  D )
13 climcncf.5 . . . 4  |-  ( ph  ->  G : Z --> A )
14 zex 9063 . . . . . 6  |-  ZZ  e.  _V
15 uzssz 9345 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
1614, 15ssexi 4066 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
171, 16eqeltri 2212 . . . 4  |-  Z  e. 
_V
18 fex 5647 . . . 4  |-  ( ( G : Z --> A  /\  Z  e.  _V )  ->  G  e.  _V )
1913, 17, 18sylancl 409 . . 3  |-  ( ph  ->  G  e.  _V )
20 coexg 5083 . . 3  |-  ( ( F  e.  ( A
-cn-> B )  /\  G  e.  _V )  ->  ( F  o.  G )  e.  _V )
214, 19, 20syl2anc 408 . 2  |-  ( ph  ->  ( F  o.  G
)  e.  _V )
22 cncfi 12734 . . . . 5  |-  ( ( F  e.  ( A
-cn-> B )  /\  D  e.  A  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) )
23223expia 1183 . . . 4  |-  ( ( F  e.  ( A
-cn-> B )  /\  D  e.  A )  ->  (
x  e.  RR+  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  D )
) )  <  x
) ) )
244, 3, 23syl2anc 408 . . 3  |-  ( ph  ->  ( x  e.  RR+  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  (
z  -  D ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) ) )
2524imp 123 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  A  ( ( abs `  ( z  -  D
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 D ) ) )  <  x ) )
2613ffvelrnda 5555 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  A )
27 fvco3 5492 . . 3  |-  ( ( G : Z --> A  /\  k  e.  Z )  ->  ( ( F  o.  G ) `  k
)  =  ( F `
 ( G `  k ) ) )
2813, 27sylan 281 . 2  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F  o.  G
) `  k )  =  ( F `  ( G `  k ) ) )
291, 2, 3, 11, 12, 21, 25, 26, 28climcn1 11077 1  |-  ( ph  ->  ( F  o.  G
)  ~~>  ( F `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686    C_ wss 3071   class class class wbr 3929    o. ccom 4543   -->wf 5119   ` cfv 5123  (class class class)co 5774   CCcc 7618    < clt 7800    - cmin 7933   ZZcz 9054   ZZ>=cuz 9326   RR+crp 9441   abscabs 10769    ~~> cli 11047   -cn->ccncf 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-cncf 12727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator