ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcn1 Unicode version

Theorem climcn1 10348
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climcn1.1  |-  Z  =  ( ZZ>= `  M )
climcn1.2  |-  ( ph  ->  M  e.  ZZ )
climcn1.3  |-  ( ph  ->  A  e.  B )
climcn1.4  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
climcn1.5  |-  ( ph  ->  G  ~~>  A )
climcn1.6  |-  ( ph  ->  H  e.  W )
climcn1.7  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
climcn1.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
climcn1.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
Assertion
Ref Expression
climcn1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Distinct variable groups:    x, k, y, z, A    B, k,
z    k, G, y, z   
k, H, x    k, F, x, y, z    ph, k, x, y, z    k, Z, y
Allowed substitution hints:    B( x, y)    G( x)    H( y, z)    M( x, y, z, k)    W( x, y, z, k)    Z( x, z)

Proof of Theorem climcn1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climcn1.7 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )
2 climcn1.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
3 climcn1.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
43adantr 270 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  M  e.  ZZ )
5 simpr 108 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
6 eqidd 2084 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
7 climcn1.5 . . . . . . . . 9  |-  ( ph  ->  G  ~~>  A )
87adantr 270 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  G  ~~>  A )
92, 4, 5, 6, 8climi2 10328 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y )
102uztrn2 8769 . . . . . . . . . . . 12  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
11 climcn1.8 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
1211adantlr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  B )
13 oveq1 5570 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
z  -  A )  =  ( ( G `
 k )  -  A ) )
1413fveq2d 5233 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( z  -  A ) )  =  ( abs `  (
( G `  k
)  -  A ) ) )
1514breq1d 3815 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( ( G `  k )  -  A
) )  <  y
) )
16 fveq2 5229 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( G `  k )  ->  ( F `  z )  =  ( F `  ( G `  k ) ) )
1716oveq1d 5578 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  -  ( F `
 A ) )  =  ( ( F `
 ( G `  k ) )  -  ( F `  A ) ) )
1817fveq2d 5233 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( G `  k )  ->  ( abs `  ( ( F `
 z )  -  ( F `  A ) ) )  =  ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) ) )
1918breq1d 3815 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( G `  k )  ->  (
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x  <->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2015, 19imbi12d 232 . . . . . . . . . . . . . . 15  |-  ( z  =  ( G `  k )  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  <-> 
( ( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) ) )
2120rspcva 2708 . . . . . . . . . . . . . 14  |-  ( ( ( G `  k
)  e.  B  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2212, 21sylan 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  k  e.  Z )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2322an32s 533 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  k  e.  Z )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2410, 23sylan2 280 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  (
( G `  k
)  -  A ) )  <  y  -> 
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2524anassrs 392 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( ( G `
 k )  -  A ) )  < 
y  ->  ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x ) )
2625ralimdva 2434 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  y  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
2726reximdva 2468 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
2827ex 113 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  y  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) ) )
299, 28mpid 41 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( A. z  e.  B  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3029rexlimdva 2482 . . . . 5  |-  ( ph  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( F `  z
)  -  ( F `
 A ) ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  ( G `
 k ) )  -  ( F `  A ) ) )  <  x ) )
3130adantr 270 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  B  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( F `  z )  -  ( F `  A )
) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
321, 31mpd 13 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x )
3332ralrimiva 2439 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  ( G `  k ) )  -  ( F `
 A ) ) )  <  x )
34 climcn1.6 . . 3  |-  ( ph  ->  H  e.  W )
35 climcn1.9 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
36 climcn1.3 . . . 4  |-  ( ph  ->  A  e.  B )
37 climcn1.4 . . . . 5  |-  ( (
ph  /\  z  e.  B )  ->  ( F `  z )  e.  CC )
3837ralrimiva 2439 . . . 4  |-  ( ph  ->  A. z  e.  B  ( F `  z )  e.  CC )
39 fveq2 5229 . . . . . 6  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
4039eleq1d 2151 . . . . 5  |-  ( z  =  A  ->  (
( F `  z
)  e.  CC  <->  ( F `  A )  e.  CC ) )
4140rspcv 2706 . . . 4  |-  ( A  e.  B  ->  ( A. z  e.  B  ( F `  z )  e.  CC  ->  ( F `  A )  e.  CC ) )
4236, 38, 41sylc 61 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
4338adantr 270 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A. z  e.  B  ( F `  z )  e.  CC )
4416eleq1d 2151 . . . . 5  |-  ( z  =  ( G `  k )  ->  (
( F `  z
)  e.  CC  <->  ( F `  ( G `  k
) )  e.  CC ) )
4544rspcv 2706 . . . 4  |-  ( ( G `  k )  e.  B  ->  ( A. z  e.  B  ( F `  z )  e.  CC  ->  ( F `  ( G `  k ) )  e.  CC ) )
4611, 43, 45sylc 61 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( G `  k ) )  e.  CC )
472, 3, 34, 35, 42, 46clim2c 10324 . 2  |-  ( ph  ->  ( H  ~~>  ( F `
 A )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  ( G `  k )
)  -  ( F `
 A ) ) )  <  x ) )
4833, 47mpbird 165 1  |-  ( ph  ->  H  ~~>  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   A.wral 2353   E.wrex 2354   class class class wbr 3805   ` cfv 4952  (class class class)co 5563   CCcc 7093    < clt 7267    - cmin 7398   ZZcz 8484   ZZ>=cuz 8752   RR+crp 8867   abscabs 10084    ~~> cli 10318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-clim 10319
This theorem is referenced by:  climcn1lem  10358
  Copyright terms: Public domain W3C validator