ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpval Unicode version

Theorem cnpval 12367
Description: The set of all functions from topology  J to topology  K that are continuous at a point  P. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Distinct variable groups:    x, f, y, J    f, K, x, y    f, X, x, y    P, f, x, y   
f, Y, x, y

Proof of Theorem cnpval
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 cnpfval 12364 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } ) )
21fveq1d 5423 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( J  CnP  K ) `  P )  =  ( ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
) )
32adantr 274 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( J  CnP  K
) `  P )  =  ( ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } ) `  P ) )
4 eqid 2139 . . . 4  |-  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } )
5 fveq2 5421 . . . . . . . 8  |-  ( v  =  P  ->  (
f `  v )  =  ( f `  P ) )
65eleq1d 2208 . . . . . . 7  |-  ( v  =  P  ->  (
( f `  v
)  e.  y  <->  ( f `  P )  e.  y ) )
7 eleq1 2202 . . . . . . . . 9  |-  ( v  =  P  ->  (
v  e.  x  <->  P  e.  x ) )
87anbi1d 460 . . . . . . . 8  |-  ( v  =  P  ->  (
( v  e.  x  /\  ( f " x
)  C_  y )  <->  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
98rexbidv 2438 . . . . . . 7  |-  ( v  =  P  ->  ( E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
106, 9imbi12d 233 . . . . . 6  |-  ( v  =  P  ->  (
( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) ) )
1110ralbidv 2437 . . . . 5  |-  ( v  =  P  ->  ( A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) ) )
1211rabbidv 2675 . . . 4  |-  ( v  =  P  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) }  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
13 simpr 109 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  P  e.  X )
14 fnmap 6549 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
15 toponmax 12192 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
1615elexd 2699 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  _V )
1716ad2antlr 480 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  Y  e.  _V )
18 toponmax 12192 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1918elexd 2699 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
2019ad2antrr 479 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  X  e.  _V )
21 fnovex 5804 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  Y  e.  _V  /\  X  e. 
_V )  ->  ( Y  ^m  X )  e. 
_V )
2214, 17, 20, 21mp3an2i 1320 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  ( Y  ^m  X )  e. 
_V )
23 rabexg 4071 . . . . 5  |-  ( ( Y  ^m  X )  e.  _V  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) }  e.  _V )
2422, 23syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) }  e.  _V )
254, 12, 13, 24fvmptd3 5514 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
)  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
263, 25eqtrd 2172 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( J  CnP  K
) `  P )  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) } )
27263impa 1176 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   _Vcvv 2686    C_ wss 3071    |-> cmpt 3989    X. cxp 4537   "cima 4542    Fn wfn 5118   ` cfv 5123  (class class class)co 5774    ^m cmap 6542  TopOnctopon 12177    CnP ccnp 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12165  df-topon 12178  df-cnp 12358
This theorem is referenced by:  iscnp  12368
  Copyright terms: Public domain W3C validator