ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmap Unicode version

Theorem fnmap 6549
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnmap  |-  ^m  Fn  ( _V  X.  _V )

Proof of Theorem fnmap
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 6544 . 2  |-  ^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x }
)
2 vex 2689 . . 3  |-  y  e. 
_V
3 vex 2689 . . 3  |-  x  e. 
_V
4 mapex 6548 . . 3  |-  ( ( y  e.  _V  /\  x  e.  _V )  ->  { f  |  f : y --> x }  e.  _V )
52, 3, 4mp2an 422 . 2  |-  { f  |  f : y --> x }  e.  _V
61, 5fnmpoi 6102 1  |-  ^m  Fn  ( _V  X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 1480   {cab 2125   _Vcvv 2686    X. cxp 4537    Fn wfn 5118   -->wf 5119    ^m cmap 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544
This theorem is referenced by:  mapsnen  6705  map1  6706  mapen  6740  mapdom1g  6741  mapxpen  6742  xpmapenlem  6743  hashfacen  10579  cnfval  12363  cnpfval  12364  cnpval  12367  ismet  12513  isxmet  12514  xmetunirn  12527
  Copyright terms: Public domain W3C validator