ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosmul Unicode version

Theorem cosmul 11455
Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 11447 and cossub 11451. (Contributed by David A. Wheeler, 26-May-2015.)
Assertion
Ref Expression
cosmul  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )

Proof of Theorem cosmul
StepHypRef Expression
1 coscl 11417 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
2 coscl 11417 . . . . 5  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
3 mulcl 7750 . . . . 5  |-  ( ( ( cos `  A
)  e.  CC  /\  ( cos `  B )  e.  CC )  -> 
( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
41, 2, 3syl2an 287 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
5 2cn 8794 . . . . 5  |-  2  e.  CC
6 2ap0 8816 . . . . 5  |-  2 #  0
75, 6pm3.2i 270 . . . 4  |-  ( 2  e.  CC  /\  2 #  0 )
8 3anass 966 . . . 4  |-  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  <->  ( ( ( cos `  A )  x.  ( cos `  B
) )  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) ) )
94, 7, 8sylanblrc 412 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  e.  CC  /\  2  e.  CC  /\  2 #  0 ) )
10 divcanap3 8461 . . 3  |-  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  ( (
2  x.  ( ( cos `  A )  x.  ( cos `  B
) ) )  / 
2 )  =  ( ( cos `  A
)  x.  ( cos `  B ) ) )
119, 10syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( cos `  A
)  x.  ( cos `  B ) ) )  /  2 )  =  ( ( cos `  A
)  x.  ( cos `  B ) ) )
12 sincl 11416 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
13 sincl 11416 . . . . . 6  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
14 mulcl 7750 . . . . . 6  |-  ( ( ( sin `  A
)  e.  CC  /\  ( sin `  B )  e.  CC )  -> 
( ( sin `  A
)  x.  ( sin `  B ) )  e.  CC )
1512, 13, 14syl2an 287 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  B ) )  e.  CC )
164, 15, 4ppncand 8116 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( sin `  A
)  x.  ( sin `  B ) ) )  +  ( ( ( cos `  A )  x.  ( cos `  B
) )  -  (
( sin `  A
)  x.  ( sin `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( cos `  B ) ) ) )
17 cossub 11451 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  -  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
18 cosadd 11447 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
1917, 18oveq12d 5792 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  ( A  -  B )
)  +  ( cos `  ( A  +  B
) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( sin `  A
)  x.  ( sin `  B ) ) )  +  ( ( ( cos `  A )  x.  ( cos `  B
) )  -  (
( sin `  A
)  x.  ( sin `  B ) ) ) ) )
2042timesd 8965 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( cos `  A
)  x.  ( cos `  B ) ) )  =  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( cos `  A
)  x.  ( cos `  B ) ) ) )
2116, 19, 203eqtr4rd 2183 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( cos `  A
)  x.  ( cos `  B ) ) )  =  ( ( cos `  ( A  -  B
) )  +  ( cos `  ( A  +  B ) ) ) )
2221oveq1d 5789 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( cos `  A
)  x.  ( cos `  B ) ) )  /  2 )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )
2311, 22eqtr3d 2174 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7621   0cc0 7623    + caddc 7626    x. cmul 7628    - cmin 7936   # cap 8346    / cdiv 8435   2c2 8774   sincsin 11353   cosccos 11354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-q 9415  df-rp 9445  df-ico 9680  df-fz 9794  df-fzo 9923  df-seqfrec 10222  df-exp 10296  df-fac 10475  df-bc 10497  df-ihash 10525  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-clim 11051  df-sumdc 11126  df-ef 11357  df-sin 11359  df-cos 11360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator