Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiegf Unicode version

Theorem csbiegf 2918
 Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiegf.1
csbiegf.2
Assertion
Ref Expression
csbiegf
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem csbiegf
StepHypRef Expression
1 csbiegf.2 . . 3
21ax-gen 1354 . 2
3 csbiegf.1 . . 3
4 csbiebt 2914 . . 3
53, 4mpdan 406 . 2
62, 5mpbii 140 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 102  wal 1257   wceq 1259   wcel 1409  wnfc 2181  csb 2880 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2788  df-csb 2881 This theorem is referenced by:  csbief  2919  sbcco3g  2931  csbco3g  2932  fmptcof  5359  fmpt2co  5865
 Copyright terms: Public domain W3C validator