ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumsnf Unicode version

Theorem sumsnf 11178
Description: A sum of a singleton is the term. A version of sumsn 11180 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1  |-  F/_ k B
sumsnf.2  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
sumsnf  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Distinct variable groups:    k, M    k, V
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem sumsnf
Dummy variables  m  n  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2281 . . . . 5  |-  F/_ m A
2 nfcsb1v 3035 . . . . 5  |-  F/_ k [_ m  /  k ]_ A
3 csbeq1a 3012 . . . . 5  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
41, 2, 3cbvsumi 11131 . . . 4  |-  sum_ k  e.  { M } A  =  sum_ m  e.  { M } [_ m  / 
k ]_ A
5 csbeq1 3006 . . . . 5  |-  ( m  =  ( { <. 1 ,  M >. } `
 n )  ->  [_ m  /  k ]_ A  =  [_ ( { <. 1 ,  M >. } `  n )  /  k ]_ A
)
6 1nn 8731 . . . . . 6  |-  1  e.  NN
76a1i 9 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  NN )
8 simpl 108 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  M  e.  V )
9 f1osng 5408 . . . . . . 7  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
106, 8, 9sylancr 410 . . . . . 6  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
11 1z 9080 . . . . . . 7  |-  1  e.  ZZ
12 fzsn 9846 . . . . . . 7  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
13 f1oeq2 5357 . . . . . . 7  |-  ( ( 1 ... 1 )  =  { 1 }  ->  ( { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M }  <->  { <. 1 ,  M >. } : {
1 } -1-1-onto-> { M } ) )
1411, 12, 13mp2b 8 . . . . . 6  |-  ( {
<. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } 
<->  { <. 1 ,  M >. } : { 1 } -1-1-onto-> { M } )
1510, 14sylibr 133 . . . . 5  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  { <. 1 ,  M >. } : ( 1 ... 1 ) -1-1-onto-> { M } )
16 elsni 3545 . . . . . . . 8  |-  ( m  e.  { M }  ->  m  =  M )
1716adantl 275 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  m  =  M )
1817csbeq1d 3010 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  =  [_ M  /  k ]_ A )
19 sumsnf.1 . . . . . . . . . 10  |-  F/_ k B
2019a1i 9 . . . . . . . . 9  |-  ( M  e.  V  ->  F/_ k B )
21 sumsnf.2 . . . . . . . . 9  |-  ( k  =  M  ->  A  =  B )
2220, 21csbiegf 3043 . . . . . . . 8  |-  ( M  e.  V  ->  [_ M  /  k ]_ A  =  B )
2322ad2antrr 479 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  =  B )
24 simplr 519 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  B  e.  CC )
2523, 24eqeltrd 2216 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ M  /  k ]_ A  e.  CC )
2618, 25eqeltrd 2216 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  m  e.  { M } )  ->  [_ m  /  k ]_ A  e.  CC )
2722ad2antrr 479 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ M  / 
k ]_ A  =  B )
28 elfz1eq 9815 . . . . . . . . 9  |-  ( n  e.  ( 1 ... 1 )  ->  n  =  1 )
2928fveq2d 5425 . . . . . . . 8  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  M >. } `  n )  =  ( { <. 1 ,  M >. } `
 1 ) )
30 fvsng 5616 . . . . . . . . 9  |-  ( ( 1  e.  NN  /\  M  e.  V )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
316, 8, 30sylancr 410 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  M >. } `  1
)  =  M )
3229, 31sylan9eqr 2194 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  M >. } `
 n )  =  M )
3332csbeq1d 3010 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  [_ ( {
<. 1 ,  M >. } `  n )  /  k ]_ A  =  [_ M  /  k ]_ A )
3428fveq2d 5425 . . . . . . 7  |-  ( n  e.  ( 1 ... 1 )  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
35 simpr 109 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  B  e.  CC )
36 fvsng 5616 . . . . . . . 8  |-  ( ( 1  e.  NN  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
376, 35, 36sylancr 410 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( { <. 1 ,  B >. } `  1
)  =  B )
3834, 37sylan9eqr 2194 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  =  B )
3927, 33, 383eqtr4rd 2183 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  n  e.  ( 1 ... 1 ) )  ->  ( { <. 1 ,  B >. } `
 n )  = 
[_ ( { <. 1 ,  M >. } `
 n )  / 
k ]_ A )
405, 7, 15, 26, 39fsum3 11156 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ m  e.  { M } [_ m  /  k ]_ A  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ) `
 1 ) )
414, 40syl5eq 2184 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) ) `  1 ) )
42 1zzd 9081 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  1  e.  ZZ )
43 eqid 2139 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) )
44 breq1 3932 . . . . . . 7  |-  ( n  =  u  ->  (
n  <_  1  <->  u  <_  1 ) )
45 fveq2 5421 . . . . . . 7  |-  ( n  =  u  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 u ) )
4644, 45ifbieq1d 3494 . . . . . 6  |-  ( n  =  u  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
47 elnnuz 9362 . . . . . . . 8  |-  ( u  e.  NN  <->  u  e.  ( ZZ>= `  1 )
)
4847biimpri 132 . . . . . . 7  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  NN )
4948adantl 275 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  NN )
50 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  <_  1 )
51 eluzle 9338 . . . . . . . . . . . 12  |-  ( u  e.  ( ZZ>= `  1
)  ->  1  <_  u )
5251ad2antlr 480 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  <_  u )
53 eluzelre 9336 . . . . . . . . . . . . 13  |-  ( u  e.  ( ZZ>= `  1
)  ->  u  e.  RR )
5453ad2antlr 480 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  e.  RR )
55 1red 7781 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  1  e.  RR )
5654, 55letri3d 7879 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( u  =  1  <->  ( u  <_  1  /\  1  <_  u ) ) )
5750, 52, 56mpbir2and 928 . . . . . . . . . 10  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  u  = 
1 )
5857fveq2d 5425 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  ( { <. 1 ,  B >. } `  1
) )
5937ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 1 )  =  B )
6058, 59eqtrd 2172 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  =  B )
6135ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  B  e.  CC )
6260, 61eqeltrd 2216 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  u  <_  1 )  ->  ( { <. 1 ,  B >. } `
 u )  e.  CC )
63 0cnd 7759 . . . . . . 7  |-  ( ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  ( ZZ>= `  1 )
)  /\  -.  u  <_  1 )  ->  0  e.  CC )
6449nnzd 9172 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  u  e.  ZZ )
65 1zzd 9081 . . . . . . . 8  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  1  e.  ZZ )
66 zdcle 9127 . . . . . . . 8  |-  ( ( u  e.  ZZ  /\  1  e.  ZZ )  -> DECID  u  <_  1 )
6764, 65, 66syl2anc 408 . . . . . . 7  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  -> DECID 
u  <_  1 )
6862, 63, 67ifcldadc 3501 . . . . . 6  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 )  e.  CC )
6943, 46, 49, 68fvmptd3 5514 . . . . 5  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  =  if ( u  <_  1 ,  ( { <. 1 ,  B >. } `  u ) ,  0 ) )
7069, 68eqeltrd 2216 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  u  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  u )  e.  CC )
71 addcl 7745 . . . . 5  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  v )  e.  CC )
7271adantl 275 . . . 4  |-  ( ( ( M  e.  V  /\  B  e.  CC )  /\  ( u  e.  CC  /\  v  e.  CC ) )  -> 
( u  +  v )  e.  CC )
7342, 70, 72seq3-1 10233 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) ) `  1
)  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
7441, 73eqtrd 2172 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `
 n ) ,  0 ) ) ` 
1 ) )
75 1le1 8334 . . . . . 6  |-  1  <_  1
7675iftruei 3480 . . . . 5  |-  if ( 1  <_  1 , 
( { <. 1 ,  B >. } `  1
) ,  0 )  =  ( { <. 1 ,  B >. } `
 1 )
7776, 37syl5eq 2184 . . . 4  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  =  B )
7877, 35eqeltrd 2216 . . 3  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 )  e.  CC )
79 breq1 3932 . . . . 5  |-  ( n  =  1  ->  (
n  <_  1  <->  1  <_  1 ) )
80 fveq2 5421 . . . . 5  |-  ( n  =  1  ->  ( { <. 1 ,  B >. } `  n )  =  ( { <. 1 ,  B >. } `
 1 ) )
8179, 80ifbieq1d 3494 . . . 4  |-  ( n  =  1  ->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n
) ,  0 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
8281, 43fvmptg 5497 . . 3  |-  ( ( 1  e.  NN  /\  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `
 1 ) ,  0 )  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 , 
( { <. 1 ,  B >. } `  n
) ,  0 ) ) `  1 )  =  if ( 1  <_  1 ,  ( { <. 1 ,  B >. } `  1 ) ,  0 ) )
836, 78, 82sylancr 410 . 2  |-  ( ( M  e.  V  /\  B  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  1 ,  ( { <. 1 ,  B >. } `  n ) ,  0 ) ) `
 1 )  =  if ( 1  <_ 
1 ,  ( {
<. 1 ,  B >. } `  1 ) ,  0 ) )
8474, 83, 773eqtrd 2176 1  |-  ( ( M  e.  V  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 819    = wceq 1331    e. wcel 1480   F/_wnfc 2268   [_csb 3003   ifcif 3474   {csn 3527   <.cop 3530   class class class wbr 3929    |-> cmpt 3989   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    <_ cle 7801   NNcn 8720   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  fsumsplitsn  11179  sumsn  11180
  Copyright terms: Public domain W3C validator