ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difinfinf Unicode version

Theorem difinfinf 6986
Description: An infinite set minus a finite subset is infinite. We require that the set has decidable equality. (Contributed by Jim Kingdon, 8-Aug-2023.)
Assertion
Ref Expression
difinfinf  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  B
) )
Distinct variable group:    x, A, y
Allowed substitution hints:    B( x, y)

Proof of Theorem difinfinf
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3188 . . 3  |-  ( w  =  (/)  ->  ( A 
\  w )  =  ( A  \  (/) ) )
21breq2d 3941 . 2  |-  ( w  =  (/)  ->  ( om  ~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  (/) ) ) )
3 difeq2 3188 . . 3  |-  ( w  =  u  ->  ( A  \  w )  =  ( A  \  u
) )
43breq2d 3941 . 2  |-  ( w  =  u  ->  ( om 
~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  u ) ) )
5 difeq2 3188 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A  \  w )  =  ( A  \  ( u  u.  { v } ) ) )
65breq2d 3941 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( om  ~<_  ( A 
\  w )  <->  om  ~<_  ( A 
\  ( u  u. 
{ v } ) ) ) )
7 difeq2 3188 . . 3  |-  ( w  =  B  ->  ( A  \  w )  =  ( A  \  B
) )
87breq2d 3941 . 2  |-  ( w  =  B  ->  ( om 
~<_  ( A  \  w
)  <->  om  ~<_  ( A  \  B ) ) )
9 simplr 519 . . 3  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  A )
10 dif0 3433 . . 3  |-  ( A 
\  (/) )  =  A
119, 10breqtrrdi 3970 . 2  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  (/) ) )
12 difss 3202 . . . . . . 7  |-  ( A 
\  u )  C_  A
13 ssralv 3161 . . . . . . . . 9  |-  ( ( A  \  u ) 
C_  A  ->  ( A. y  e.  A DECID  x  =  y  ->  A. y  e.  ( A  \  u
)DECID  x  =  y ) )
1412, 13ax-mp 5 . . . . . . . 8  |-  ( A. y  e.  A DECID  x  =  y  ->  A. y  e.  ( A  \  u )DECID  x  =  y )
1514ralimi 2495 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  A. x  e.  A  A. y  e.  ( A  \  u )DECID  x  =  y )
16 ssralv 3161 . . . . . . 7  |-  ( ( A  \  u ) 
C_  A  ->  ( A. x  e.  A  A. y  e.  ( A  \  u )DECID  x  =  y  ->  A. x  e.  ( A  \  u
) A. y  e.  ( A  \  u
)DECID  x  =  y ) )
1712, 15, 16mpsyl 65 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  ->  A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y )
1817ad5antr 487 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y )
19 simpr 109 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( A  \  u ) )
20 simprl 520 . . . . . . 7  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  B  C_  A )
2120ad3antrrr 483 . . . . . 6  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  B  C_  A
)
22 simplrr 525 . . . . . 6  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  v  e.  ( B  \  u ) )
23 ssdif 3211 . . . . . . 7  |-  ( B 
C_  A  ->  ( B  \  u )  C_  ( A  \  u
) )
2423sseld 3096 . . . . . 6  |-  ( B 
C_  A  ->  (
v  e.  ( B 
\  u )  -> 
v  e.  ( A 
\  u ) ) )
2521, 22, 24sylc 62 . . . . 5  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  v  e.  ( A  \  u ) )
26 difinfsn 6985 . . . . 5  |-  ( ( A. x  e.  ( A  \  u ) A. y  e.  ( A  \  u )DECID  x  =  y  /\  om  ~<_  ( A  \  u
)  /\  v  e.  ( A  \  u
) )  ->  om  ~<_  ( ( A  \  u ) 
\  { v } ) )
2718, 19, 25, 26syl3anc 1216 . . . 4  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( ( A  \  u )  \  { v } ) )
28 difun1 3336 . . . 4  |-  ( A 
\  ( u  u. 
{ v } ) )  =  ( ( A  \  u ) 
\  { v } )
2927, 28breqtrrdi 3970 . . 3  |-  ( ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  /\  om  ~<_  ( A 
\  u ) )  ->  om  ~<_  ( A  \  ( u  u.  {
v } ) ) )
3029ex 114 . 2  |-  ( ( ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  /\  u  e.  Fin )  /\  (
u  C_  B  /\  v  e.  ( B  \  u ) ) )  ->  ( om  ~<_  ( A 
\  u )  ->  om 
~<_  ( A  \  (
u  u.  { v } ) ) ) )
31 simprr 521 . 2  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  B  e.  Fin )
322, 4, 6, 8, 11, 30, 31findcard2sd 6786 1  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 819    = wceq 1331    e. wcel 1480   A.wral 2416    \ cdif 3068    u. cun 3069    C_ wss 3071   (/)c0 3363   {csn 3527   class class class wbr 3929   omcom 4504    ~<_ cdom 6633   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-dju 6923  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  inffinp1  11942
  Copyright terms: Public domain W3C validator