![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version |
Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralimi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ralimi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ralimia 2425 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 |
This theorem depends on definitions: df-bi 115 df-ral 2354 |
This theorem is referenced by: ral2imi 2428 r19.26 2486 r19.29 2495 rr19.3v 2734 rr19.28v 2735 reu3 2783 uniiunlem 3083 reupick2 3257 uniss2 3640 ss2iun 3701 iineq2 3703 iunss2 3731 disjss2 3777 disjeq2 3778 repizf 3902 reusv3i 4217 tfis 4332 ssrel2 4456 issref 4737 dmmptg 4848 funco 4970 fununi 4998 fun11uni 5000 funimaexglem 5013 fnmpt 5056 fun11iun 5178 mpteqb 5293 chfnrn 5310 dffo5 5348 ffvresb 5360 fmptcof 5363 dfmptg 5374 mpt22eqb 5641 ralrnmpt2 5646 rexrnmpt2 5647 fnmpt2 5859 mpt2exxg 5864 smores 5941 riinerm 6245 cauappcvgprlemdisj 6903 caucvgsrlemasr 7028 caucvgsr 7040 rexuz3 10014 recvguniq 10019 cau3lem 10138 caubnd2 10141 rexanre 10244 climi2 10265 climi0 10266 climcaucn 10326 ndvdssub 10474 gcdsupex 10493 gcdsupcl 10494 bezoutlemmo 10539 bj-indint 10884 bj-indind 10885 bj-bdfindis 10900 setindis 10920 bdsetindis 10922 |
Copyright terms: Public domain | W3C validator |