ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldju Unicode version

Theorem eldju 6953
Description: Element of a disjoint union. (Contributed by BJ and Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
eldju  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem eldju
StepHypRef Expression
1 djuunr 6951 . . . 4  |-  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) )  =  ( A B )
21eqcomi 2143 . . 3  |-  ( A B )  =  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )
32eleq2i 2206 . 2  |-  ( C  e.  ( A B )  <-> 
C  e.  ( ran  (inl  |`  A )  u. 
ran  (inr  |`  B ) ) )
4 elun 3217 . . 3  |-  ( C  e.  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  <-> 
( C  e.  ran  (inl  |`  A )  \/  C  e.  ran  (inr  |`  B ) ) )
5 djulf1or 6941 . . . . . 6  |-  (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A )
6 f1ofn 5368 . . . . . 6  |-  ( (inl  |`  A ) : A -1-1-onto-> ( { (/) }  X.  A
)  ->  (inl  |`  A )  Fn  A )
7 fvelrnb 5469 . . . . . 6  |-  ( (inl  |`  A )  Fn  A  ->  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  ( (inl  |`  A ) `  x
)  =  C ) )
85, 6, 7mp2b 8 . . . . 5  |-  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  ( (inl  |`  A ) `
 x )  =  C )
9 eqcom 2141 . . . . . 6  |-  ( ( (inl  |`  A ) `  x )  =  C  <-> 
C  =  ( (inl  |`  A ) `  x
) )
109rexbii 2442 . . . . 5  |-  ( E. x  e.  A  ( (inl  |`  A ) `  x )  =  C  <->  E. x  e.  A  C  =  ( (inl  |`  A ) `  x
) )
118, 10bitri 183 . . . 4  |-  ( C  e.  ran  (inl  |`  A )  <->  E. x  e.  A  C  =  ( (inl  |`  A ) `  x
) )
12 djurf1or 6942 . . . . . 6  |-  (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B )
13 f1ofn 5368 . . . . . 6  |-  ( (inr  |`  B ) : B -1-1-onto-> ( { 1o }  X.  B
)  ->  (inr  |`  B )  Fn  B )
14 fvelrnb 5469 . . . . . 6  |-  ( (inr  |`  B )  Fn  B  ->  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  ( (inr  |`  B ) `  x
)  =  C ) )
1512, 13, 14mp2b 8 . . . . 5  |-  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  ( (inr  |`  B ) `
 x )  =  C )
16 eqcom 2141 . . . . . 6  |-  ( ( (inr  |`  B ) `  x )  =  C  <-> 
C  =  ( (inr  |`  B ) `  x
) )
1716rexbii 2442 . . . . 5  |-  ( E. x  e.  B  ( (inr  |`  B ) `  x )  =  C  <->  E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) )
1815, 17bitri 183 . . . 4  |-  ( C  e.  ran  (inr  |`  B )  <->  E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) )
1911, 18orbi12i 753 . . 3  |-  ( ( C  e.  ran  (inl  |`  A )  \/  C  e.  ran  (inr  |`  B ) )  <->  ( E. x  e.  A  C  =  ( (inl  |`  A ) `
 x )  \/ 
E. x  e.  B  C  =  ( (inr  |`  B ) `  x
) ) )
204, 19bitri 183 . 2  |-  ( C  e.  ( ran  (inl  |`  A )  u.  ran  (inr  |`  B ) )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
213, 20bitri 183 1  |-  ( C  e.  ( A B )  <-> 
( E. x  e.  A  C  =  ( (inl  |`  A ) `  x )  \/  E. x  e.  B  C  =  ( (inr  |`  B ) `
 x ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   E.wrex 2417    u. cun 3069   (/)c0 3363   {csn 3527    X. cxp 4537   ran crn 4540    |` cres 4541    Fn wfn 5118   -1-1-onto->wf1o 5122   ` cfv 5123   1oc1o 6306   ⊔ cdju 6922  inlcinl 6930  inrcinr 6931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by:  djur  6954  exmidfodomrlemreseldju  7056
  Copyright terms: Public domain W3C validator