![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi12i | Unicode version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
orbi12i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orbi12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | orbi2i 712 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | orbi12i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | orbi1i 713 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitri 182 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: andir 766 anddi 768 dcbii 781 3orbi123i 1129 3or6 1255 excxor 1310 19.33b2 1561 sbequilem 1760 sborv 1812 sbor 1870 r19.43 2513 rexun 3153 indi 3218 difindiss 3225 symdifxor 3237 unab 3238 dfpr2 3425 rabrsndc 3468 pwprss 3605 pwtpss 3606 unipr 3623 uniun 3628 iunun 3763 iunxun 3764 brun 3839 pwunss 4046 ordsoexmid 4313 onintexmid 4323 opthprc 4417 cnvsom 4891 ftpg 5379 tpostpos 5913 ltexprlemloc 6859 axpre-ltwlin 7111 axpre-apti 7113 axpre-mulext 7116 fz01or 9204 gcdsupex 10493 gcdsupcl 10494 |
Copyright terms: Public domain | W3C validator |