ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelrnb Unicode version

Theorem fvelrnb 5469
Description: A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
fvelrnb  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fvelrnb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-rex 2422 . . . 4  |-  ( E. x  e.  A  ( F `  x )  =  B  <->  E. x
( x  e.  A  /\  ( F `  x
)  =  B ) )
2 19.41v 1874 . . . . 5  |-  ( E. x ( ( x  e.  A  /\  ( F `  x )  =  B )  /\  F  Fn  A )  <->  ( E. x ( x  e.  A  /\  ( F `
 x )  =  B )  /\  F  Fn  A ) )
3 simpl 108 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  ( F `  x )  =  B )  ->  x  e.  A )
43anim1i 338 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  ( x  e.  A  /\  F  Fn  A ) )
54ancomd 265 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  ( F  Fn  A  /\  x  e.  A ) )
6 funfvex 5438 . . . . . . . . 9  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
76funfni 5223 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
85, 7syl 14 . . . . . . 7  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  ( F `  x )  e.  _V )
9 simpr 109 . . . . . . . . 9  |-  ( ( x  e.  A  /\  ( F `  x )  =  B )  -> 
( F `  x
)  =  B )
109eleq1d 2208 . . . . . . . 8  |-  ( ( x  e.  A  /\  ( F `  x )  =  B )  -> 
( ( F `  x )  e.  _V  <->  B  e.  _V ) )
1110adantr 274 . . . . . . 7  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  ( ( F `  x )  e.  _V  <->  B  e.  _V ) )
128, 11mpbid 146 . . . . . 6  |-  ( ( ( x  e.  A  /\  ( F `  x
)  =  B )  /\  F  Fn  A
)  ->  B  e.  _V )
1312exlimiv 1577 . . . . 5  |-  ( E. x ( ( x  e.  A  /\  ( F `  x )  =  B )  /\  F  Fn  A )  ->  B  e.  _V )
142, 13sylbir 134 . . . 4  |-  ( ( E. x ( x  e.  A  /\  ( F `  x )  =  B )  /\  F  Fn  A )  ->  B  e.  _V )
151, 14sylanb 282 . . 3  |-  ( ( E. x  e.  A  ( F `  x )  =  B  /\  F  Fn  A )  ->  B  e.  _V )
1615expcom 115 . 2  |-  ( F  Fn  A  ->  ( E. x  e.  A  ( F `  x )  =  B  ->  B  e.  _V ) )
17 fnrnfv 5468 . . . 4  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
1817eleq2d 2209 . . 3  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  B  e.  { y  |  E. x  e.  A  y  =  ( F `  x ) } ) )
19 eqeq1 2146 . . . . . 6  |-  ( y  =  B  ->  (
y  =  ( F `
 x )  <->  B  =  ( F `  x ) ) )
20 eqcom 2141 . . . . . 6  |-  ( B  =  ( F `  x )  <->  ( F `  x )  =  B )
2119, 20syl6bb 195 . . . . 5  |-  ( y  =  B  ->  (
y  =  ( F `
 x )  <->  ( F `  x )  =  B ) )
2221rexbidv 2438 . . . 4  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  ( F `  x )  <->  E. x  e.  A  ( F `  x )  =  B ) )
2322elab3g 2835 . . 3  |-  ( ( E. x  e.  A  ( F `  x )  =  B  ->  B  e.  _V )  ->  ( B  e.  { y  |  E. x  e.  A  y  =  ( F `  x ) }  <->  E. x  e.  A  ( F `  x )  =  B ) )
2418, 23sylan9bbr 458 . 2  |-  ( ( ( E. x  e.  A  ( F `  x )  =  B  ->  B  e.  _V )  /\  F  Fn  A
)  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
2516, 24mpancom 418 1  |-  ( F  Fn  A  ->  ( B  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2125   E.wrex 2417   _Vcvv 2686   ran crn 4540    Fn wfn 5118   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131
This theorem is referenced by:  chfnrn  5531  rexrn  5557  ralrn  5558  elrnrexdmb  5560  ffnfv  5578  fconstfvm  5638  elunirn  5667  isoini  5719  reldm  6084  ordiso2  6920  eldju  6953  ctssdc  6998  uzn0  9341  frec2uzrand  10178  frecuzrdgtcl  10185  frecuzrdgfunlem  10192  uzin2  10759
  Copyright terms: Public domain W3C validator