ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzom1elp1fzo Unicode version

Theorem elfzom1elp1fzo 9288
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.)
Assertion
Ref Expression
elfzom1elp1fzo  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( I  +  1 )  e.  ( 0..^ N ) )

Proof of Theorem elfzom1elp1fzo
StepHypRef Expression
1 elfzofz 9248 . . . . . . 7  |-  ( I  e.  ( 0..^ ( N  -  1 ) )  ->  I  e.  ( 0 ... ( N  -  1 ) ) )
2 elfzuz2 9124 . . . . . . 7  |-  ( I  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
3 elnn0uz 8737 . . . . . . . 8  |-  ( ( N  -  1 )  e.  NN0  <->  ( N  - 
1 )  e.  (
ZZ>= `  0 ) )
4 zcn 8437 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
54anim1i 333 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( N  -  1
)  e.  NN0 )  ->  ( N  e.  CC  /\  ( N  -  1 )  e.  NN0 )
)
6 elnnnn0 8398 . . . . . . . . . 10  |-  ( N  e.  NN  <->  ( N  e.  CC  /\  ( N  -  1 )  e. 
NN0 ) )
75, 6sylibr 132 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( N  -  1
)  e.  NN0 )  ->  N  e.  NN )
87expcom 114 . . . . . . . 8  |-  ( ( N  -  1 )  e.  NN0  ->  ( N  e.  ZZ  ->  N  e.  NN ) )
93, 8sylbir 133 . . . . . . 7  |-  ( ( N  -  1 )  e.  ( ZZ>= `  0
)  ->  ( N  e.  ZZ  ->  N  e.  NN ) )
101, 2, 93syl 17 . . . . . 6  |-  ( I  e.  ( 0..^ ( N  -  1 ) )  ->  ( N  e.  ZZ  ->  N  e.  NN ) )
1110impcom 123 . . . . 5  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  ->  N  e.  NN )
12 1nn0 8371 . . . . . . 7  |-  1  e.  NN0
1312a1i 9 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  NN0 )
14 nnnn0 8362 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
15 nnge1 8129 . . . . . 6  |-  ( N  e.  NN  ->  1  <_  N )
1613, 14, 153jca 1119 . . . . 5  |-  ( N  e.  NN  ->  (
1  e.  NN0  /\  N  e.  NN0  /\  1  <_  N ) )
1711, 16syl 14 . . . 4  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 1  e.  NN0  /\  N  e.  NN0  /\  1  <_  N ) )
18 elfz2nn0 9205 . . . 4  |-  ( 1  e.  ( 0 ... N )  <->  ( 1  e.  NN0  /\  N  e. 
NN0  /\  1  <_  N ) )
1917, 18sylibr 132 . . 3  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
1  e.  ( 0 ... N ) )
20 fzossrbm1 9259 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
0..^ ( N  - 
1 ) )  C_  ( 0..^ N ) )
2120adantr 270 . . . . . 6  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 0..^ ( N  -  1 ) ) 
C_  ( 0..^ N ) )
22 fzossfz 9251 . . . . . 6  |-  ( 0..^ N )  C_  (
0 ... N )
2321, 22syl6ss 3012 . . . . 5  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 0..^ ( N  -  1 ) ) 
C_  ( 0 ... N ) )
24 simpr 108 . . . . 5  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  ->  I  e.  ( 0..^ ( N  -  1 ) ) )
2523, 24jca 300 . . . 4  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( ( 0..^ ( N  -  1 ) )  C_  ( 0 ... N )  /\  I  e.  ( 0..^ ( N  -  1 ) ) ) )
26 ssel2 2995 . . . 4  |-  ( ( ( 0..^ ( N  -  1 ) ) 
C_  ( 0 ... N )  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  ->  I  e.  ( 0 ... N
) )
27 elfzubelfz 9131 . . . 4  |-  ( I  e.  ( 0 ... N )  ->  N  e.  ( 0 ... N
) )
2825, 26, 273syl 17 . . 3  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  ->  N  e.  ( 0 ... N ) )
2919, 28jca 300 . 2  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( 1  e.  ( 0 ... N )  /\  N  e.  ( 0 ... N ) ) )
30 elfzodifsumelfzo 9287 . 2  |-  ( ( 1  e.  ( 0 ... N )  /\  N  e.  ( 0 ... N ) )  ->  ( I  e.  ( 0..^ ( N  -  1 ) )  ->  ( I  + 
1 )  e.  ( 0..^ N ) ) )
3129, 24, 30sylc 61 1  |-  ( ( N  e.  ZZ  /\  I  e.  ( 0..^ ( N  -  1 ) ) )  -> 
( I  +  1 )  e.  ( 0..^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    e. wcel 1434    C_ wss 2974   class class class wbr 3793   ` cfv 4932  (class class class)co 5543   CCcc 7041   0cc0 7043   1c1 7044    + caddc 7046    <_ cle 7216    - cmin 7346   NNcn 8106   NN0cn0 8355   ZZcz 8432   ZZ>=cuz 8700   ...cfz 9105  ..^cfzo 9229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701  df-fz 9106  df-fzo 9230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator