ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnge1 Unicode version

Theorem nnge1 8743
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnge1  |-  ( A  e.  NN  ->  1  <_  A )

Proof of Theorem nnge1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3933 . 2  |-  ( x  =  1  ->  (
1  <_  x  <->  1  <_  1 ) )
2 breq2 3933 . 2  |-  ( x  =  y  ->  (
1  <_  x  <->  1  <_  y ) )
3 breq2 3933 . 2  |-  ( x  =  ( y  +  1 )  ->  (
1  <_  x  <->  1  <_  ( y  +  1 ) ) )
4 breq2 3933 . 2  |-  ( x  =  A  ->  (
1  <_  x  <->  1  <_  A ) )
5 1le1 8334 . 2  |-  1  <_  1
6 nnre 8727 . . 3  |-  ( y  e.  NN  ->  y  e.  RR )
7 recn 7753 . . . . . 6  |-  ( y  e.  RR  ->  y  e.  CC )
87addid1d 7911 . . . . 5  |-  ( y  e.  RR  ->  (
y  +  0 )  =  y )
98breq2d 3941 . . . 4  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  <->  1  <_  y ) )
10 0lt1 7889 . . . . . . . 8  |-  0  <  1
11 0re 7766 . . . . . . . . 9  |-  0  e.  RR
12 1re 7765 . . . . . . . . 9  |-  1  e.  RR
13 axltadd 7834 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  y  e.  RR )  ->  (
0  <  1  ->  ( y  +  0 )  <  ( y  +  1 ) ) )
1411, 12, 13mp3an12 1305 . . . . . . . 8  |-  ( y  e.  RR  ->  (
0  <  1  ->  ( y  +  0 )  <  ( y  +  1 ) ) )
1510, 14mpi 15 . . . . . . 7  |-  ( y  e.  RR  ->  (
y  +  0 )  <  ( y  +  1 ) )
16 readdcl 7746 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  0  e.  RR )  ->  ( y  +  0 )  e.  RR )
1711, 16mpan2 421 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  0 )  e.  RR )
18 peano2re 7898 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  1 )  e.  RR )
19 lttr 7838 . . . . . . . . 9  |-  ( ( ( y  +  0 )  e.  RR  /\  ( y  +  1 )  e.  RR  /\  1  e.  RR )  ->  ( ( ( y  +  0 )  < 
( y  +  1 )  /\  ( y  +  1 )  <  1 )  ->  (
y  +  0 )  <  1 ) )
2012, 19mp3an3 1304 . . . . . . . 8  |-  ( ( ( y  +  0 )  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( ( ( y  +  0 )  <  ( y  +  1 )  /\  (
y  +  1 )  <  1 )  -> 
( y  +  0 )  <  1 ) )
2117, 18, 20syl2anc 408 . . . . . . 7  |-  ( y  e.  RR  ->  (
( ( y  +  0 )  <  (
y  +  1 )  /\  ( y  +  1 )  <  1
)  ->  ( y  +  0 )  <  1 ) )
2215, 21mpand 425 . . . . . 6  |-  ( y  e.  RR  ->  (
( y  +  1 )  <  1  -> 
( y  +  0 )  <  1 ) )
2322con3d 620 . . . . 5  |-  ( y  e.  RR  ->  ( -.  ( y  +  0 )  <  1  ->  -.  ( y  +  1 )  <  1 ) )
24 lenlt 7840 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( y  +  0 )  e.  RR )  ->  ( 1  <_ 
( y  +  0 )  <->  -.  ( y  +  0 )  <  1 ) )
2512, 17, 24sylancr 410 . . . . 5  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  <->  -.  (
y  +  0 )  <  1 ) )
26 lenlt 7840 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( y  +  1 )  e.  RR )  ->  ( 1  <_ 
( y  +  1 )  <->  -.  ( y  +  1 )  <  1 ) )
2712, 18, 26sylancr 410 . . . . 5  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  1 )  <->  -.  (
y  +  1 )  <  1 ) )
2823, 25, 273imtr4d 202 . . . 4  |-  ( y  e.  RR  ->  (
1  <_  ( y  +  0 )  -> 
1  <_  ( y  +  1 ) ) )
299, 28sylbird 169 . . 3  |-  ( y  e.  RR  ->  (
1  <_  y  ->  1  <_  ( y  +  1 ) ) )
306, 29syl 14 . 2  |-  ( y  e.  NN  ->  (
1  <_  y  ->  1  <_  ( y  +  1 ) ) )
311, 2, 3, 4, 5, 30nnind 8736 1  |-  ( A  e.  NN  ->  1  <_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801   NNcn 8720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-iota 5088  df-fv 5131  df-ov 5777  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-inn 8721
This theorem is referenced by:  nnle1eq1  8744  nngt0  8745  nnnlt1  8746  nnrecgt0  8758  nnge1d  8763  elnnnn0c  9022  elnnz1  9077  zltp1le  9108  nn0ledivnn  9554  elfz1b  9870  fzo1fzo0n0  9960  elfzom1elp1fzo  9979  fzo0sn0fzo1  9998  nnlesq  10396  faclbnd  10487  faclbnd3  10489  cvgratz  11301  coprmgcdb  11769  isprm3  11799  pw2dvds  11844  oddennn  11905
  Copyright terms: Public domain W3C validator