ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaen2g Unicode version

Theorem f1imaen2g 6340
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (This version of f1imaen 6341 does not need ax-setind 4288.) (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
f1imaen2g  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  ~~  C )

Proof of Theorem f1imaen2g
StepHypRef Expression
1 simprr 499 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  C  e.  V )
2 simplr 497 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  B  e.  V )
3 f1f 5123 . . . . . 6  |-  ( F : A -1-1-> B  ->  F : A --> B )
4 imassrn 4709 . . . . . . 7  |-  ( F
" C )  C_  ran  F
5 frn 5083 . . . . . . 7  |-  ( F : A --> B  ->  ran  F  C_  B )
64, 5syl5ss 3011 . . . . . 6  |-  ( F : A --> B  -> 
( F " C
)  C_  B )
73, 6syl 14 . . . . 5  |-  ( F : A -1-1-> B  -> 
( F " C
)  C_  B )
87ad2antrr 472 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  C_  B )
92, 8ssexd 3926 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  e.  _V )
10 f1ores 5172 . . . 4  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
1110ad2ant2r 493 . . 3  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F  |`  C ) : C -1-1-onto-> ( F " C
) )
12 f1oen2g 6302 . . 3  |-  ( ( C  e.  V  /\  ( F " C )  e.  _V  /\  ( F  |`  C ) : C -1-1-onto-> ( F " C
) )  ->  C  ~~  ( F " C
) )
131, 9, 11, 12syl3anc 1170 . 2  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  ->  C  ~~  ( F " C ) )
1413ensymd 6330 1  |-  ( ( ( F : A -1-1-> B  /\  B  e.  V
)  /\  ( C  C_  A  /\  C  e.  V ) )  -> 
( F " C
)  ~~  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   _Vcvv 2602    C_ wss 2974   class class class wbr 3793   ran crn 4372    |` cres 4373   "cima 4374   -->wf 4928   -1-1->wf1 4929   -1-1-onto->wf1o 4931    ~~ cen 6285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-er 6172  df-en 6288
This theorem is referenced by:  phplem4  6390  phplem4dom  6397  phplem4on  6402
  Copyright terms: Public domain W3C validator