![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnfun | Unicode version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 4935 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-fn 4935 |
This theorem is referenced by: fnrel 5028 funfni 5030 fnco 5038 fnssresb 5042 ffun 5079 f1fun 5125 f1ofun 5159 fnbrfvb 5246 fvelimab 5261 fvun1 5271 elpreima 5318 respreima 5327 fconst3m 5412 fnfvima 5425 fnunirn 5438 f1eqcocnv 5462 fnexALT 5771 tfrlem4 5962 tfrlem5 5963 fndmeng 6357 shftfn 9850 |
Copyright terms: Public domain | W3C validator |