![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simplbi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simplbi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 118 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simpld 110 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm5.62dc 887 3simpa 936 xoror 1311 anxordi 1332 sbidm 1773 reurex 2568 eqimss 3052 eldifi 3095 elinel1 3159 inss1 3193 sopo 4076 wefr 4121 ordtr 4141 opelxp1 4403 relop 4514 funmo 4947 funrel 4949 funinsn 4979 fnfun 5027 ffn 5077 f1f 5123 f1of1 5156 f1ofo 5164 isof1o 5478 eqopi 5829 1st2nd2 5832 reldmtpos 5902 swoer 6200 ecopover 6270 ecopoverg 6273 fnfi 6446 dfplpq2 6606 enq0ref 6685 cauappcvgprlemopl 6898 cauappcvgprlemdisj 6903 caucvgprlemopl 6921 caucvgprlemdisj 6926 caucvgprprlemopl 6949 caucvgprprlemopu 6951 caucvgprprlemdisj 6954 peano1nnnn 7082 axrnegex 7107 ltxrlt 7245 1nn 8117 zre 8436 nnssz 8449 ixxss1 9003 ixxss2 9004 ixxss12 9005 iccss2 9043 rge0ssre 9076 elfzuz 9117 uzdisj 9186 nn0disj 9225 frecuzrdgtcl 9494 frecuzrdgfunlem 9501 prmnn 10636 prmuz2 10656 oddpwdc 10696 sqpweven 10697 2sqpwodd 10698 bj-indint 10884 bj-inf2vnlem2 10924 |
Copyright terms: Public domain | W3C validator |