ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass1 Unicode version

Theorem funimass1 5001
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass1  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )

Proof of Theorem funimass1
StepHypRef Expression
1 imass2 4725 . 2  |-  ( ( `' F " A ) 
C_  B  ->  ( F " ( `' F " A ) )  C_  ( F " B ) )
2 funimacnv 5000 . . . 4  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )
3 dfss 2988 . . . . . 6  |-  ( A 
C_  ran  F  <->  A  =  ( A  i^i  ran  F
) )
43biimpi 118 . . . . 5  |-  ( A 
C_  ran  F  ->  A  =  ( A  i^i  ran 
F ) )
54eqcomd 2087 . . . 4  |-  ( A 
C_  ran  F  ->  ( A  i^i  ran  F
)  =  A )
62, 5sylan9eq 2134 . . 3  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( F " ( `' F " A ) )  =  A )
76sseq1d 3027 . 2  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( F "
( `' F " A ) )  C_  ( F " B )  <-> 
A  C_  ( F " B ) ) )
81, 7syl5ib 152 1  |-  ( ( Fun  F  /\  A  C_ 
ran  F )  -> 
( ( `' F " A )  C_  B  ->  A  C_  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    i^i cin 2973    C_ wss 2974   `'ccnv 4364   ran crn 4366   "cima 4368   Fun wfun 4920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-br 3788  df-opab 3842  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-fun 4928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator