ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvtp1g Unicode version

Theorem fvtp1g 5397
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp1g  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A
)  =  D )

Proof of Theorem fvtp1g
StepHypRef Expression
1 df-tp 3411 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } )
21fveq1i 5207 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } `
 A )  =  ( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )
3 necom 2304 . . . . 5  |-  ( A  =/=  C  <->  C  =/=  A )
4 fvunsng 5385 . . . . 5  |-  ( ( A  e.  V  /\  C  =/=  A )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
53, 4sylan2b 275 . . . 4  |-  ( ( A  e.  V  /\  A  =/=  C )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
65ad2ant2rl 488 . . 3  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  ( { <. A ,  D >. ,  <. B ,  E >. } `  A ) )
7 fvpr1g 5395 . . . . 5  |-  ( ( A  e.  V  /\  D  e.  W  /\  A  =/=  B )  -> 
( { <. A ,  D >. ,  <. B ,  E >. } `  A
)  =  D )
873expa 1115 . . . 4  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  A  =/=  B )  ->  ( { <. A ,  D >. , 
<. B ,  E >. } `
 A )  =  D )
98adantrr 456 . . 3  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. } `  A
)  =  D )
106, 9eqtrd 2088 . 2  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) `  A )  =  D )
112, 10syl5eq 2100 1  |-  ( ( ( A  e.  V  /\  D  e.  W
)  /\  ( A  =/=  B  /\  A  =/= 
C ) )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  A
)  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409    =/= wne 2220    u. cun 2943   {csn 3403   {cpr 3404   {ctp 3405   <.cop 3406   ` cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-tp 3411  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-res 4385  df-iota 4895  df-fun 4932  df-fv 4938
This theorem is referenced by:  fvtp2g  5398  fvtp1  5400
  Copyright terms: Public domain W3C validator