ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imval2 Unicode version

Theorem imval2 9722
Description: The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
imval2  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )

Proof of Theorem imval2
StepHypRef Expression
1 imcl 9682 . . . 4  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
21recnd 7113 . . 3  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
3 2mulicn 8204 . . . 4  |-  ( 2  x.  _i )  e.  CC
4 2muliap0 8206 . . . 4  |-  ( 2  x.  _i ) #  0
5 divcanap4 7750 . . . 4  |-  ( ( ( Im `  A
)  e.  CC  /\  ( 2  x.  _i )  e.  CC  /\  (
2  x.  _i ) #  0 )  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
63, 4, 5mp3an23 1235 . . 3  |-  ( ( Im `  A )  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
72, 6syl 14 . 2  |-  ( A  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( Im `  A ) )
8 recl 9681 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
98recnd 7113 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
10 ax-icn 7037 . . . . . . 7  |-  _i  e.  CC
11 mulcl 7066 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
1210, 2, 11sylancr 399 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
139, 12addcld 7104 . . . . 5  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  e.  CC )
1413, 9, 12subsubd 7413 . . . 4  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  -  (
Re `  A )
)  +  ( _i  x.  ( Im `  A ) ) ) )
15 replim 9687 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
16 remim 9688 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
1715, 16oveq12d 5558 . . . 4  |-  ( A  e.  CC  ->  ( A  -  ( * `  A ) )  =  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )
18122timesd 8224 . . . . 5  |-  ( A  e.  CC  ->  (
2  x.  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
19 mulcom 7068 . . . . . . . 8  |-  ( ( ( Im `  A
)  e.  CC  /\  ( 2  x.  _i )  e.  CC )  ->  ( ( Im `  A )  x.  (
2  x.  _i ) )  =  ( ( 2  x.  _i )  x.  ( Im `  A ) ) )
203, 19mpan2 409 . . . . . . 7  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( ( 2  x.  _i )  x.  ( Im `  A
) ) )
21 2cn 8061 . . . . . . . 8  |-  2  e.  CC
22 mulass 7070 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  _i  e.  CC  /\  (
Im `  A )  e.  CC )  ->  (
( 2  x.  _i )  x.  ( Im `  A ) )  =  ( 2  x.  (
_i  x.  ( Im `  A ) ) ) )
2321, 10, 22mp3an12 1233 . . . . . . 7  |-  ( ( Im `  A )  e.  CC  ->  (
( 2  x.  _i )  x.  ( Im `  A ) )  =  ( 2  x.  (
_i  x.  ( Im `  A ) ) ) )
2420, 23eqtrd 2088 . . . . . 6  |-  ( ( Im `  A )  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( 2  x.  ( _i  x.  (
Im `  A )
) ) )
252, 24syl 14 . . . . 5  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( 2  x.  ( _i  x.  (
Im `  A )
) ) )
269, 12pncan2d 7387 . . . . . 6  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( Re
`  A ) )  =  ( _i  x.  ( Im `  A ) ) )
2726oveq1d 5555 . . . . 5  |-  ( A  e.  CC  ->  (
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
Re `  A )
)  +  ( _i  x.  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
2818, 25, 273eqtr4d 2098 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  -  ( Re `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
2914, 17, 283eqtr4rd 2099 . . 3  |-  ( A  e.  CC  ->  (
( Im `  A
)  x.  ( 2  x.  _i ) )  =  ( A  -  ( * `  A
) ) )
3029oveq1d 5555 . 2  |-  ( A  e.  CC  ->  (
( ( Im `  A )  x.  (
2  x.  _i ) )  /  ( 2  x.  _i ) )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )
317, 30eqtr3d 2090 1  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( ( A  -  ( * `  A ) )  / 
( 2  x.  _i ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1259    e. wcel 1409   class class class wbr 3792   ` cfv 4930  (class class class)co 5540   CCcc 6945   0cc0 6947   _ici 6949    + caddc 6950    x. cmul 6952    - cmin 7245   # cap 7646    / cdiv 7725   2c2 8040   *ccj 9667   Recre 9668   Imcim 9669
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-2 8049  df-cj 9670  df-re 9671  df-im 9672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator