![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulcom | Unicode version |
Description: Alias for ax-mulcom 7139, for naming consistency with mulcomi 7187. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulcom 7139 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mulcom 7139 |
This theorem is referenced by: adddir 7172 mulid2 7179 mulcomi 7187 mulcomd 7202 mul12 7304 mul32 7305 mul31 7306 muladd 7555 subdir 7557 mul01 7560 mulneg2 7567 recextlem1 7808 divmulap3 7832 div23ap 7846 div13ap 7848 div12ap 7849 divmulasscomap 7851 divcanap4 7854 divmul13ap 7870 divmul24ap 7871 divcanap7 7876 div2negap 7890 prodgt02 7998 prodge02 8000 ltmul2 8001 lemul2 8002 lemul2a 8004 ltmulgt12 8010 lemulge12 8012 ltmuldiv2 8020 ltdivmul2 8023 ledivmul2 8025 lemuldiv2 8027 times2 8228 modqcyc2 9442 subsq 9678 cjmulrcl 9912 imval2 9919 abscj 10076 sqabsadd 10079 sqabssub 10080 dvdsmul1 10362 odd2np1lem 10416 odd2np1 10417 opeo 10441 omeo 10442 modgcd 10526 dvdsgcd 10545 gcdmultiple 10553 coprmdvds 10618 coprmdvds2 10619 qredeq 10622 |
Copyright terms: Public domain | W3C validator |