ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf1o Unicode version

Theorem iseqf1olemqf1o 10269
Description: Lemma for seq3f1o 10280. 
Q is a permutation of  ( M ... N
).  Q is formed from the constant portion of  J, followed by the single element  K (at position  K), followed by the rest of J (with the  K deleted and the elements before  K moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemqf1o  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
Distinct variable groups:    u, J    u, K    u, M    u, N    ph, u
Allowed substitution hint:    Q( u)

Proof of Theorem iseqf1olemqf1o
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemqf.k . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
2 iseqf1olemqf.j . . . 4  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
3 iseqf1olemqf.q . . . 4  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
41, 2, 3iseqf1olemqf 10267 . . 3  |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
51ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  K  e.  ( M ... N ) )
62ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) )
7 simplrl 524 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  v  e.  ( M ... N ) )
8 simplrr 525 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  w  e.  ( M ... N ) )
9 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  ( Q `  v )  =  ( Q `  w ) )
105, 6, 3, 7, 8, 9iseqf1olemmo 10268 . . . . 5  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  v  =  w )
1110ex 114 . . . 4  |-  ( (
ph  /\  ( v  e.  ( M ... N
)  /\  w  e.  ( M ... N ) ) )  ->  (
( Q `  v
)  =  ( Q `
 w )  -> 
v  =  w ) )
1211ralrimivva 2514 . . 3  |-  ( ph  ->  A. v  e.  ( M ... N ) A. w  e.  ( M ... N ) ( ( Q `  v )  =  ( Q `  w )  ->  v  =  w ) )
13 dff13 5669 . . 3  |-  ( Q : ( M ... N ) -1-1-> ( M ... N )  <->  ( Q : ( M ... N ) --> ( M ... N )  /\  A. v  e.  ( M ... N ) A. w  e.  ( M ... N ) ( ( Q `  v )  =  ( Q `  w )  ->  v  =  w ) ) )
144, 12, 13sylanbrc 413 . 2  |-  ( ph  ->  Q : ( M ... N ) -1-1-> ( M ... N ) )
15 elfzel1 9808 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
161, 15syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
17 elfzel2 9807 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
181, 17syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1916, 18fzfigd 10207 . . . 4  |-  ( ph  ->  ( M ... N
)  e.  Fin )
20 enrefg 6658 . . . 4  |-  ( ( M ... N )  e.  Fin  ->  ( M ... N )  ~~  ( M ... N ) )
2119, 20syl 14 . . 3  |-  ( ph  ->  ( M ... N
)  ~~  ( M ... N ) )
22 f1finf1o 6835 . . 3  |-  ( ( ( M ... N
)  ~~  ( M ... N )  /\  ( M ... N )  e. 
Fin )  ->  ( Q : ( M ... N ) -1-1-> ( M ... N )  <->  Q :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
2321, 19, 22syl2anc 408 . 2  |-  ( ph  ->  ( Q : ( M ... N )
-1-1-> ( M ... N
)  <->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) ) )
2414, 23mpbid 146 1  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   ifcif 3474   class class class wbr 3929    |-> cmpt 3989   `'ccnv 4538   -->wf 5119   -1-1->wf1 5120   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774    ~~ cen 6632   Fincfn 6634   1c1 7624    - cmin 7936   ZZcz 9057   ...cfz 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-inn 8724  df-n0 8981  df-z 9058  df-uz 9330  df-fz 9794
This theorem is referenced by:  seq3f1olemqsumkj  10274  seq3f1olemqsumk  10275  seq3f1olemstep  10277
  Copyright terms: Public domain W3C validator