ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpconst Unicode version

Theorem iunxpconst 4426
Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 4425 . 2  |-  ( U_ x  e.  A  {
x }  X.  B
)  =  U_ x  e.  A  ( {
x }  X.  B
)
2 iunid 3741 . . 3  |-  U_ x  e.  A  { x }  =  A
32xpeq1i 4391 . 2  |-  ( U_ x  e.  A  {
x }  X.  B
)  =  ( A  X.  B )
41, 3eqtr3i 2104 1  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  ( A  X.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1285   {csn 3406   U_ciun 3686    X. cxp 4369
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-iun 3688  df-opab 3848  df-xp 4377
This theorem is referenced by:  ralxp  4507  rexxp  4508  mpt2mpt  5627  mpt2mpts  5855  fmpt2  5858
  Copyright terms: Public domain W3C validator