ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmbr2 Unicode version

Theorem lmbr2 12386
Description: Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
lmbr2.4  |-  Z  =  ( ZZ>= `  M )
lmbr2.5  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
lmbr2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
Distinct variable groups:    j, k, u, F    j, J, k, u    ph, j, k, u   
j, Z, k, u   
j, M    P, j,
k, u    j, X, k, u
Allowed substitution hints:    M( u, k)

Proof of Theorem lmbr2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 lmbr.2 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
21lmbr 12385 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) ) ) )
3 uzf 9332 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
4 ffn 5272 . . . . . . . 8  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
5 reseq2 4814 . . . . . . . . . 10  |-  ( z  =  ( ZZ>= `  j
)  ->  ( F  |`  z )  =  ( F  |`  ( ZZ>= `  j ) ) )
6 id 19 . . . . . . . . . 10  |-  ( z  =  ( ZZ>= `  j
)  ->  z  =  ( ZZ>= `  j )
)
75, 6feq12d 5262 . . . . . . . . 9  |-  ( z  =  ( ZZ>= `  j
)  ->  ( ( F  |`  z ) : z --> u  <->  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> u ) )
87rexrn 5557 . . . . . . . 8  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u ) )
93, 4, 8mp2b 8 . . . . . . 7  |-  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> u )
10 pmfun 6562 . . . . . . . . . . 11  |-  ( F  e.  ( X  ^pm  CC )  ->  Fun  F )
1110ad2antrl 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  Fun  F )
12 ffvresb 5583 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> u  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
1311, 12syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  (
( F  |`  ( ZZ>=
`  j ) ) : ( ZZ>= `  j
) --> u  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
1413rexbidv 2438 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
15 lmbr2.5 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
1615adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  M  e.  ZZ )
17 lmbr2.4 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
1817rexuz3 10765 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
1916, 18syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) )
2014, 19bitr4d 190 . . . . . . 7  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> u 
<->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
219, 20syl5bb 191 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )
2221imbi2d 229 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  (
( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u )  <-> 
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2322ralbidv 2437 . . . 4  |-  ( (
ph  /\  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X
) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u )  <->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) )
2423pm5.32da 447 . . 3  |-  ( ph  ->  ( ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
25 df-3an 964 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) ) )
26 df-3an 964 . . 3  |-  ( ( F  e.  ( X 
^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) )  <->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) )
2724, 25, 263bitr4g 222 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. z  e.  ran  ZZ>= ( F  |`  z ) : z --> u ) )  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
282, 27bitrd 187 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   ~Pcpw 3510   class class class wbr 3929   dom cdm 4539   ran crn 4540    |` cres 4541   Fun wfun 5117    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^pm cpm 6543   CCcc 7621   ZZcz 9057   ZZ>=cuz 9329  TopOnctopon 12180   ~~> tclm 12359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pm 6545  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-inn 8724  df-n0 8981  df-z 9058  df-uz 9330  df-top 12168  df-topon 12181  df-lm 12362
This theorem is referenced by:  lmbrf  12387  lmcvg  12389  lmres  12420  lmtopcnp  12422
  Copyright terms: Public domain W3C validator