Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfel Unicode version

Theorem nfel 2202
 Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1
nfeq.2
Assertion
Ref Expression
nfel

Proof of Theorem nfel
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-clel 2052 . 2
2 nfcv 2194 . . . . 5
3 nfnfc.1 . . . . 5
42, 3nfeq 2201 . . . 4
5 nfeq.2 . . . . 5
65nfcri 2188 . . . 4
74, 6nfan 1473 . . 3
87nfex 1544 . 2
91, 8nfxfr 1379 1
 Colors of variables: wff set class Syntax hints:   wa 101   wceq 1259  wnf 1365  wex 1397   wcel 1409  wnfc 2181 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-cleq 2049  df-clel 2052  df-nfc 2183 This theorem is referenced by:  nfel1  2204  nfel2  2206  nfnel  2321  elabgf  2708  elrabf  2719  sbcel12g  2893  nfdisjv  3785  rabxfrd  4229  ffnfvf  5352  elabgft1  10304  elabgf2  10306  bj-rspgt  10312
 Copyright terms: Public domain W3C validator