ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptelixpg Unicode version

Theorem mptelixpg 6628
Description: Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
Assertion
Ref Expression
mptelixpg  |-  ( I  e.  V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
Distinct variable group:    x, I
Allowed substitution hints:    J( x)    K( x)    V( x)

Proof of Theorem mptelixpg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2697 . 2  |-  ( I  e.  V  ->  I  e.  _V )
2 nfcv 2281 . . . . . 6  |-  F/_ y K
3 nfcsb1v 3035 . . . . . 6  |-  F/_ x [_ y  /  x ]_ K
4 csbeq1a 3012 . . . . . 6  |-  ( x  =  y  ->  K  =  [_ y  /  x ]_ K )
52, 3, 4cbvixp 6609 . . . . 5  |-  X_ x  e.  I  K  =  X_ y  e.  I  [_ y  /  x ]_ K
65eleq2i 2206 . . . 4  |-  ( ( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  ( x  e.  I  |->  J )  e.  X_ y  e.  I  [_ y  /  x ]_ K )
7 elixp2 6596 . . . 4  |-  ( ( x  e.  I  |->  J )  e.  X_ y  e.  I  [_ y  /  x ]_ K  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
) )
8 3anass 966 . . . 4  |-  ( ( ( x  e.  I  |->  J )  e.  _V  /\  ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
)  <->  ( ( x  e.  I  |->  J )  e.  _V  /\  (
( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I 
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
) ) )
96, 7, 83bitri 205 . . 3  |-  ( ( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K ) ) )
10 eqid 2139 . . . . . . . 8  |-  ( x  e.  I  |->  J )  =  ( x  e.  I  |->  J )
1110fnmpt 5249 . . . . . . 7  |-  ( A. x  e.  I  J  e.  K  ->  ( x  e.  I  |->  J )  Fn  I )
1210fvmpt2 5504 . . . . . . . . 9  |-  ( ( x  e.  I  /\  J  e.  K )  ->  ( ( x  e.  I  |->  J ) `  x )  =  J )
13 simpr 109 . . . . . . . . 9  |-  ( ( x  e.  I  /\  J  e.  K )  ->  J  e.  K )
1412, 13eqeltrd 2216 . . . . . . . 8  |-  ( ( x  e.  I  /\  J  e.  K )  ->  ( ( x  e.  I  |->  J ) `  x )  e.  K
)
1514ralimiaa 2494 . . . . . . 7  |-  ( A. x  e.  I  J  e.  K  ->  A. x  e.  I  ( (
x  e.  I  |->  J ) `  x )  e.  K )
1611, 15jca 304 . . . . . 6  |-  ( A. x  e.  I  J  e.  K  ->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I  ( ( x  e.  I  |->  J ) `  x
)  e.  K ) )
17 dffn2 5274 . . . . . . . 8  |-  ( ( x  e.  I  |->  J )  Fn  I  <->  ( x  e.  I  |->  J ) : I --> _V )
1810fmpt 5570 . . . . . . . . 9  |-  ( A. x  e.  I  J  e.  _V  <->  ( x  e.  I  |->  J ) : I --> _V )
1910fvmpt2 5504 . . . . . . . . . . . . 13  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( x  e.  I  |->  J ) `  x )  =  J )
2019eleq1d 2208 . . . . . . . . . . . 12  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( ( x  e.  I  |->  J ) `
 x )  e.  K  <->  J  e.  K
) )
2120biimpd 143 . . . . . . . . . . 11  |-  ( ( x  e.  I  /\  J  e.  _V )  ->  ( ( ( x  e.  I  |->  J ) `
 x )  e.  K  ->  J  e.  K ) )
2221ralimiaa 2494 . . . . . . . . . 10  |-  ( A. x  e.  I  J  e.  _V  ->  A. x  e.  I  ( (
( x  e.  I  |->  J ) `  x
)  e.  K  ->  J  e.  K )
)
23 ralim 2491 . . . . . . . . . 10  |-  ( A. x  e.  I  (
( ( x  e.  I  |->  J ) `  x )  e.  K  ->  J  e.  K )  ->  ( A. x  e.  I  ( (
x  e.  I  |->  J ) `  x )  e.  K  ->  A. x  e.  I  J  e.  K ) )
2422, 23syl 14 . . . . . . . . 9  |-  ( A. x  e.  I  J  e.  _V  ->  ( A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K  ->  A. x  e.  I  J  e.  K )
)
2518, 24sylbir 134 . . . . . . . 8  |-  ( ( x  e.  I  |->  J ) : I --> _V  ->  ( A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K  ->  A. x  e.  I  J  e.  K )
)
2617, 25sylbi 120 . . . . . . 7  |-  ( ( x  e.  I  |->  J )  Fn  I  -> 
( A. x  e.  I  ( ( x  e.  I  |->  J ) `
 x )  e.  K  ->  A. x  e.  I  J  e.  K ) )
2726imp 123 . . . . . 6  |-  ( ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K
)  ->  A. x  e.  I  J  e.  K )
2816, 27impbii 125 . . . . 5  |-  ( A. x  e.  I  J  e.  K  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K ) )
29 nfv 1508 . . . . . . 7  |-  F/ y ( ( x  e.  I  |->  J ) `  x )  e.  K
30 nffvmpt1 5432 . . . . . . . 8  |-  F/_ x
( ( x  e.  I  |->  J ) `  y )
3130, 3nfel 2290 . . . . . . 7  |-  F/ x
( ( x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K
32 fveq2 5421 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  e.  I  |->  J ) `  x
)  =  ( ( x  e.  I  |->  J ) `  y ) )
3332, 4eleq12d 2210 . . . . . . 7  |-  ( x  =  y  ->  (
( ( x  e.  I  |->  J ) `  x )  e.  K  <->  ( ( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
3429, 31, 33cbvral 2650 . . . . . 6  |-  ( A. x  e.  I  (
( x  e.  I  |->  J ) `  x
)  e.  K  <->  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K )
3534anbi2i 452 . . . . 5  |-  ( ( ( x  e.  I  |->  J )  Fn  I  /\  A. x  e.  I 
( ( x  e.  I  |->  J ) `  x )  e.  K
)  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  (
( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
3628, 35bitri 183 . . . 4  |-  ( A. x  e.  I  J  e.  K  <->  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  (
( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )
37 mptexg 5645 . . . . 5  |-  ( I  e.  _V  ->  (
x  e.  I  |->  J )  e.  _V )
3837biantrurd 303 . . . 4  |-  ( I  e.  _V  ->  (
( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K )  <->  ( (
x  e.  I  |->  J )  e.  _V  /\  ( ( x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( (
x  e.  I  |->  J ) `  y )  e.  [_ y  /  x ]_ K ) ) ) )
3936, 38syl5rbb 192 . . 3  |-  ( I  e.  _V  ->  (
( ( x  e.  I  |->  J )  e. 
_V  /\  ( (
x  e.  I  |->  J )  Fn  I  /\  A. y  e.  I  ( ( x  e.  I  |->  J ) `  y
)  e.  [_ y  /  x ]_ K ) )  <->  A. x  e.  I  J  e.  K )
)
409, 39syl5bb 191 . 2  |-  ( I  e.  _V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
411, 40syl 14 1  |-  ( I  e.  V  ->  (
( x  e.  I  |->  J )  e.  X_ x  e.  I  K  <->  A. x  e.  I  J  e.  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   A.wral 2416   _Vcvv 2686   [_csb 3003    |-> cmpt 3989    Fn wfn 5118   -->wf 5119   ` cfv 5123   X_cixp 6592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ixp 6593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator