ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5fin Unicode version

Theorem php5fin 6416
Description: A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
Assertion
Ref Expression
php5fin  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )

Proof of Theorem php5fin
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 isfi 6308 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 118 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 270 . 2  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  E. n  e.  om  A  ~~  n )
4 php5 6393 . . . 4  |-  ( n  e.  om  ->  -.  n  ~~  suc  n )
54ad2antrl 474 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  n  ~~  suc  n
)
6 enen1 6381 . . . . 5  |-  ( A 
~~  n  ->  ( A  ~~  ( A  u.  { B } )  <->  n  ~~  ( A  u.  { B } ) ) )
76ad2antll 475 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  ~~  ( A  u.  { B } )  <->  n  ~~  ( A  u.  { B } ) ) )
8 fiunsnnn 6415 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  u.  { B } )  ~~  suc  n )
9 enen2 6382 . . . . 5  |-  ( ( A  u.  { B } )  ~~  suc  n  ->  ( n  ~~  ( A  u.  { B } )  <->  n  ~~  suc  n ) )
108, 9syl 14 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( n  ~~  ( A  u.  { B } )  <->  n  ~~  suc  n ) )
117, 10bitrd 186 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  ~~  ( A  u.  { B } )  <->  n  ~~  suc  n ) )
125, 11mtbird 631 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  ( _V 
\  A ) )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
133, 12rexlimddv 2482 1  |-  ( ( A  e.  Fin  /\  B  e.  ( _V  \  A ) )  ->  -.  A  ~~  ( A  u.  { B }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   E.wrex 2350   _Vcvv 2602    \ cdif 2971    u. cun 2972   {csn 3406   class class class wbr 3793   suc csuc 4128   omcom 4339    ~~ cen 6285   Fincfn 6287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-1o 6065  df-er 6172  df-en 6288  df-fin 6290
This theorem is referenced by:  unsnfidcex  6440  unsnfidcel  6441
  Copyright terms: Public domain W3C validator