ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pofun Unicode version

Theorem pofun 4077
Description: A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.)
Hypotheses
Ref Expression
pofun.1  |-  S  =  { <. x ,  y
>.  |  X R Y }
pofun.2  |-  ( x  =  y  ->  X  =  Y )
Assertion
Ref Expression
pofun  |-  ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  ->  S  Po  A )
Distinct variable groups:    x, R, y   
y, X    x, Y    x, A    x, B
Allowed substitution hints:    A( y)    B( y)    S( x, y)    X( x)    Y( y)

Proof of Theorem pofun
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 2910 . . . . . . 7  |-  F/_ x [_ v  /  x ]_ X
21nfel1 2204 . . . . . 6  |-  F/ x [_ v  /  x ]_ X  e.  B
3 csbeq1a 2888 . . . . . . 7  |-  ( x  =  v  ->  X  =  [_ v  /  x ]_ X )
43eleq1d 2122 . . . . . 6  |-  ( x  =  v  ->  ( X  e.  B  <->  [_ v  /  x ]_ X  e.  B
) )
52, 4rspc 2667 . . . . 5  |-  ( v  e.  A  ->  ( A. x  e.  A  X  e.  B  ->  [_ v  /  x ]_ X  e.  B )
)
65impcom 120 . . . 4  |-  ( ( A. x  e.  A  X  e.  B  /\  v  e.  A )  ->  [_ v  /  x ]_ X  e.  B
)
7 poirr 4072 . . . . 5  |-  ( ( R  Po  B  /\  [_ v  /  x ]_ X  e.  B )  ->  -.  [_ v  /  x ]_ X R [_ v  /  x ]_ X
)
8 df-br 3793 . . . . . 6  |-  ( v S v  <->  <. v ,  v >.  e.  S
)
9 pofun.1 . . . . . . 7  |-  S  =  { <. x ,  y
>.  |  X R Y }
109eleq2i 2120 . . . . . 6  |-  ( <.
v ,  v >.  e.  S  <->  <. v ,  v
>.  e.  { <. x ,  y >.  |  X R Y } )
11 nfcv 2194 . . . . . . . 8  |-  F/_ x R
12 nfcv 2194 . . . . . . . 8  |-  F/_ x Y
131, 11, 12nfbr 3836 . . . . . . 7  |-  F/ x [_ v  /  x ]_ X R Y
14 nfv 1437 . . . . . . 7  |-  F/ y
[_ v  /  x ]_ X R [_ v  /  x ]_ X
15 vex 2577 . . . . . . 7  |-  v  e. 
_V
163breq1d 3802 . . . . . . 7  |-  ( x  =  v  ->  ( X R Y  <->  [_ v  /  x ]_ X R Y ) )
17 vex 2577 . . . . . . . . . 10  |-  y  e. 
_V
18 pofun.2 . . . . . . . . . 10  |-  ( x  =  y  ->  X  =  Y )
1917, 12, 18csbief 2919 . . . . . . . . 9  |-  [_ y  /  x ]_ X  =  Y
20 csbeq1 2883 . . . . . . . . 9  |-  ( y  =  v  ->  [_ y  /  x ]_ X  = 
[_ v  /  x ]_ X )
2119, 20syl5eqr 2102 . . . . . . . 8  |-  ( y  =  v  ->  Y  =  [_ v  /  x ]_ X )
2221breq2d 3804 . . . . . . 7  |-  ( y  =  v  ->  ( [_ v  /  x ]_ X R Y  <->  [_ v  /  x ]_ X R [_ v  /  x ]_ X
) )
2313, 14, 15, 15, 16, 22opelopabf 4039 . . . . . 6  |-  ( <.
v ,  v >.  e.  { <. x ,  y
>.  |  X R Y }  <->  [_ v  /  x ]_ X R [_ v  /  x ]_ X )
248, 10, 233bitri 199 . . . . 5  |-  ( v S v  <->  [_ v  /  x ]_ X R [_ v  /  x ]_ X
)
257, 24sylnibr 612 . . . 4  |-  ( ( R  Po  B  /\  [_ v  /  x ]_ X  e.  B )  ->  -.  v S v )
266, 25sylan2 274 . . 3  |-  ( ( R  Po  B  /\  ( A. x  e.  A  X  e.  B  /\  v  e.  A )
)  ->  -.  v S v )
2726anassrs 386 . 2  |-  ( ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  /\  v  e.  A
)  ->  -.  v S v )
285com12 30 . . . . . 6  |-  ( A. x  e.  A  X  e.  B  ->  ( v  e.  A  ->  [_ v  /  x ]_ X  e.  B ) )
29 nfcsb1v 2910 . . . . . . . . 9  |-  F/_ x [_ w  /  x ]_ X
3029nfel1 2204 . . . . . . . 8  |-  F/ x [_ w  /  x ]_ X  e.  B
31 csbeq1a 2888 . . . . . . . . 9  |-  ( x  =  w  ->  X  =  [_ w  /  x ]_ X )
3231eleq1d 2122 . . . . . . . 8  |-  ( x  =  w  ->  ( X  e.  B  <->  [_ w  /  x ]_ X  e.  B
) )
3330, 32rspc 2667 . . . . . . 7  |-  ( w  e.  A  ->  ( A. x  e.  A  X  e.  B  ->  [_ w  /  x ]_ X  e.  B )
)
3433com12 30 . . . . . 6  |-  ( A. x  e.  A  X  e.  B  ->  ( w  e.  A  ->  [_ w  /  x ]_ X  e.  B ) )
35 nfcsb1v 2910 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ X
3635nfel1 2204 . . . . . . . 8  |-  F/ x [_ z  /  x ]_ X  e.  B
37 csbeq1a 2888 . . . . . . . . 9  |-  ( x  =  z  ->  X  =  [_ z  /  x ]_ X )
3837eleq1d 2122 . . . . . . . 8  |-  ( x  =  z  ->  ( X  e.  B  <->  [_ z  /  x ]_ X  e.  B
) )
3936, 38rspc 2667 . . . . . . 7  |-  ( z  e.  A  ->  ( A. x  e.  A  X  e.  B  ->  [_ z  /  x ]_ X  e.  B )
)
4039com12 30 . . . . . 6  |-  ( A. x  e.  A  X  e.  B  ->  ( z  e.  A  ->  [_ z  /  x ]_ X  e.  B ) )
4128, 34, 403anim123d 1225 . . . . 5  |-  ( A. x  e.  A  X  e.  B  ->  ( ( v  e.  A  /\  w  e.  A  /\  z  e.  A )  ->  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) ) )
4241imp 119 . . . 4  |-  ( ( A. x  e.  A  X  e.  B  /\  ( v  e.  A  /\  w  e.  A  /\  z  e.  A
) )  ->  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )
4342adantll 453 . . 3  |-  ( ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  /\  ( v  e.  A  /\  w  e.  A  /\  z  e.  A
) )  ->  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )
44 potr 4073 . . . . 5  |-  ( ( R  Po  B  /\  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )  ->  (
( [_ v  /  x ]_ X R [_ w  /  x ]_ X  /\  [_ w  /  x ]_ X R [_ z  /  x ]_ X )  ->  [_ v  /  x ]_ X R [_ z  /  x ]_ X ) )
45 df-br 3793 . . . . . . 7  |-  ( v S w  <->  <. v ,  w >.  e.  S
)
469eleq2i 2120 . . . . . . 7  |-  ( <.
v ,  w >.  e.  S  <->  <. v ,  w >.  e.  { <. x ,  y >.  |  X R Y } )
47 nfv 1437 . . . . . . . 8  |-  F/ y
[_ v  /  x ]_ X R [_ w  /  x ]_ X
48 vex 2577 . . . . . . . 8  |-  w  e. 
_V
49 csbeq1 2883 . . . . . . . . . 10  |-  ( y  =  w  ->  [_ y  /  x ]_ X  = 
[_ w  /  x ]_ X )
5019, 49syl5eqr 2102 . . . . . . . . 9  |-  ( y  =  w  ->  Y  =  [_ w  /  x ]_ X )
5150breq2d 3804 . . . . . . . 8  |-  ( y  =  w  ->  ( [_ v  /  x ]_ X R Y  <->  [_ v  /  x ]_ X R [_ w  /  x ]_ X
) )
5213, 47, 15, 48, 16, 51opelopabf 4039 . . . . . . 7  |-  ( <.
v ,  w >.  e. 
{ <. x ,  y
>.  |  X R Y }  <->  [_ v  /  x ]_ X R [_ w  /  x ]_ X )
5345, 46, 523bitri 199 . . . . . 6  |-  ( v S w  <->  [_ v  /  x ]_ X R [_ w  /  x ]_ X
)
54 df-br 3793 . . . . . . 7  |-  ( w S z  <->  <. w ,  z >.  e.  S
)
559eleq2i 2120 . . . . . . 7  |-  ( <.
w ,  z >.  e.  S  <->  <. w ,  z
>.  e.  { <. x ,  y >.  |  X R Y } )
5629, 11, 12nfbr 3836 . . . . . . . 8  |-  F/ x [_ w  /  x ]_ X R Y
57 nfv 1437 . . . . . . . 8  |-  F/ y
[_ w  /  x ]_ X R [_ z  /  x ]_ X
58 vex 2577 . . . . . . . 8  |-  z  e. 
_V
5931breq1d 3802 . . . . . . . 8  |-  ( x  =  w  ->  ( X R Y  <->  [_ w  /  x ]_ X R Y ) )
60 csbeq1 2883 . . . . . . . . . 10  |-  ( y  =  z  ->  [_ y  /  x ]_ X  = 
[_ z  /  x ]_ X )
6119, 60syl5eqr 2102 . . . . . . . . 9  |-  ( y  =  z  ->  Y  =  [_ z  /  x ]_ X )
6261breq2d 3804 . . . . . . . 8  |-  ( y  =  z  ->  ( [_ w  /  x ]_ X R Y  <->  [_ w  /  x ]_ X R [_ z  /  x ]_ X
) )
6356, 57, 48, 58, 59, 62opelopabf 4039 . . . . . . 7  |-  ( <.
w ,  z >.  e.  { <. x ,  y
>.  |  X R Y }  <->  [_ w  /  x ]_ X R [_ z  /  x ]_ X )
6454, 55, 633bitri 199 . . . . . 6  |-  ( w S z  <->  [_ w  /  x ]_ X R [_ z  /  x ]_ X
)
6553, 64anbi12i 441 . . . . 5  |-  ( ( v S w  /\  w S z )  <->  ( [_ v  /  x ]_ X R [_ w  /  x ]_ X  /\  [_ w  /  x ]_ X R
[_ z  /  x ]_ X ) )
66 df-br 3793 . . . . . 6  |-  ( v S z  <->  <. v ,  z >.  e.  S
)
679eleq2i 2120 . . . . . 6  |-  ( <.
v ,  z >.  e.  S  <->  <. v ,  z
>.  e.  { <. x ,  y >.  |  X R Y } )
68 nfv 1437 . . . . . . 7  |-  F/ y
[_ v  /  x ]_ X R [_ z  /  x ]_ X
6961breq2d 3804 . . . . . . 7  |-  ( y  =  z  ->  ( [_ v  /  x ]_ X R Y  <->  [_ v  /  x ]_ X R [_ z  /  x ]_ X
) )
7013, 68, 15, 58, 16, 69opelopabf 4039 . . . . . 6  |-  ( <.
v ,  z >.  e.  { <. x ,  y
>.  |  X R Y }  <->  [_ v  /  x ]_ X R [_ z  /  x ]_ X )
7166, 67, 703bitri 199 . . . . 5  |-  ( v S z  <->  [_ v  /  x ]_ X R [_ z  /  x ]_ X
)
7244, 65, 713imtr4g 198 . . . 4  |-  ( ( R  Po  B  /\  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )  ->  (
( v S w  /\  w S z )  ->  v S
z ) )
7372adantlr 454 . . 3  |-  ( ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  /\  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )  ->  (
( v S w  /\  w S z )  ->  v S
z ) )
7443, 73syldan 270 . 2  |-  ( ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  /\  ( v  e.  A  /\  w  e.  A  /\  z  e.  A
) )  ->  (
( v S w  /\  w S z )  ->  v S
z ) )
7527, 74ispod 4069 1  |-  ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  ->  S  Po  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    /\ w3a 896    = wceq 1259    e. wcel 1409   A.wral 2323   [_csb 2880   <.cop 3406   class class class wbr 3792   {copab 3845    Po wpo 4059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-po 4061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator