ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3ge0 Unicode version

Theorem ser3ge0 10293
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
ser3ge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3ge0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
ser3ge0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
Assertion
Ref Expression
ser3ge0  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem ser3ge0
Dummy variables  j  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9815 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5421 . . . . 5  |-  ( w  =  M  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  M
) )
54breq2d 3941 . . . 4  |-  ( w  =  M  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  M
) ) )
65imbi2d 229 . . 3  |-  ( w  =  M  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) ) ) )
7 fveq2 5421 . . . . 5  |-  ( w  =  j  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  j
) )
87breq2d 3941 . . . 4  |-  ( w  =  j  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  j
) ) )
98imbi2d 229 . . 3  |-  ( w  =  j  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  j
) ) ) )
10 fveq2 5421 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
1110breq2d 3941 . . . 4  |-  ( w  =  ( j  +  1 )  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) )
1211imbi2d 229 . . 3  |-  ( w  =  ( j  +  1 )  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) ) )
13 fveq2 5421 . . . . 5  |-  ( w  =  N  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  N
) )
1413breq2d 3941 . . . 4  |-  ( w  =  N  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  N
) ) )
1514imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) ) ) )
16 fveq2 5421 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
1716breq2d 3941 . . . . . 6  |-  ( k  =  M  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  M ) ) )
18 ser3ge0.3 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
1918ralrimiva 2505 . . . . . 6  |-  ( ph  ->  A. k  e.  ( M ... N ) 0  <_  ( F `  k ) )
20 eluzfz1 9814 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
211, 20syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
2217, 19, 21rspcdva 2794 . . . . 5  |-  ( ph  ->  0  <_  ( F `  M ) )
23 eluzel2 9334 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
241, 23syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
25 ser3ge0.2 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
26 readdcl 7749 . . . . . . 7  |-  ( ( k  e.  RR  /\  v  e.  RR )  ->  ( k  +  v )  e.  RR )
2726adantl 275 . . . . . 6  |-  ( (
ph  /\  ( k  e.  RR  /\  v  e.  RR ) )  -> 
( k  +  v )  e.  RR )
2824, 25, 27seq3-1 10236 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 M )  =  ( F `  M
) )
2922, 28breqtrrd 3956 . . . 4  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) )
3029a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) ) )
31 eqid 2139 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3231, 24, 25, 27seqf 10237 . . . . . . . . . 10  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> RR )
3332ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  ->  seq M (  +  ,  F ) : (
ZZ>= `  M ) --> RR )
34 elfzouz 9931 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( ZZ>= `  M )
)
3534ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
j  e.  ( ZZ>= `  M ) )
3633, 35ffvelrnd 5556 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
(  seq M (  +  ,  F ) `  j )  e.  RR )
37 fveq2 5421 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( F `  k )  =  ( F `  ( j  +  1 ) ) )
3837eleq1d 2208 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( j  +  1 ) )  e.  RR ) )
3925ralrimiva 2505 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  RR )
4039adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  RR )
41 peano2uz 9381 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
4234, 41syl 14 . . . . . . . . . . 11  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
4342adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  (
ZZ>= `  M ) )
4438, 40, 43rspcdva 2794 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( F `  ( j  +  1 ) )  e.  RR )
4544adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
( F `  (
j  +  1 ) )  e.  RR )
46 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  (  seq M (  +  ,  F ) `  j
) )
4737breq2d 3941 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  ( j  +  1 ) ) ) )
4819ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  ->  A. k  e.  ( M ... N ) 0  <_  ( F `  k ) )
49 fzofzp1 10007 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
5049ad2antlr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
( j  +  1 )  e.  ( M ... N ) )
5147, 48, 50rspcdva 2794 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  ( F `  ( j  +  1 ) ) )
5236, 45, 46, 51addge0d 8287 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  ( (  seq M (  +  ,  F ) `  j
)  +  ( F `
 ( j  +  1 ) ) ) )
5325adantlr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
5453adantlr 468 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_  (  seq M
(  +  ,  F
) `  j )
)  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
5526adantl 275 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_  (  seq M
(  +  ,  F
) `  j )
)  /\  ( k  e.  RR  /\  v  e.  RR ) )  -> 
( k  +  v )  e.  RR )
5635, 54, 55seq3p1 10238 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
(  seq M (  +  ,  F ) `  ( j  +  1 ) )  =  ( (  seq M (  +  ,  F ) `
 j )  +  ( F `  (
j  +  1 ) ) ) )
5752, 56breqtrrd 3956 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
5857ex 114 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( 0  <_ 
(  seq M (  +  ,  F ) `  j )  ->  0  <_  (  seq M (  +  ,  F ) `
 ( j  +  1 ) ) ) )
5958expcom 115 . . . 4  |-  ( j  e.  ( M..^ N
)  ->  ( ph  ->  ( 0  <_  (  seq M (  +  ,  F ) `  j
)  ->  0  <_  (  seq M (  +  ,  F ) `  ( j  +  1 ) ) ) ) )
6059a2d 26 . . 3  |-  ( j  e.  ( M..^ N
)  ->  ( ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  j
) )  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) ) )
616, 9, 12, 15, 30, 60fzind2 10019 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) ) )
623, 61mpcom 36 1  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   RRcr 7622   0cc0 7623   1c1 7624    + caddc 7626    <_ cle 7804   ZZcz 9057   ZZ>=cuz 9329   ...cfz 9793  ..^cfzo 9922    seqcseq 10221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-addcom 7723  ax-addass 7725  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-0id 7731  ax-rnegex 7732  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-ltadd 7739
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-inn 8724  df-n0 8981  df-z 9058  df-uz 9330  df-fz 9794  df-fzo 9923  df-seqfrec 10222
This theorem is referenced by:  ser3le  10294
  Copyright terms: Public domain W3C validator