ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sowlin Unicode version

Theorem sowlin 4083
Description: A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.)
Assertion
Ref Expression
sowlin  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( B R C  ->  ( B R D  \/  D R C ) ) )

Proof of Theorem sowlin
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3796 . . . . 5  |-  ( x  =  B  ->  (
x R y  <->  B R
y ) )
2 breq1 3796 . . . . . 6  |-  ( x  =  B  ->  (
x R z  <->  B R
z ) )
32orbi1d 738 . . . . 5  |-  ( x  =  B  ->  (
( x R z  \/  z R y )  <->  ( B R z  \/  z R y ) ) )
41, 3imbi12d 232 . . . 4  |-  ( x  =  B  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( B R y  ->  ( B R z  \/  z R y ) ) ) )
54imbi2d 228 . . 3  |-  ( x  =  B  ->  (
( R  Or  A  ->  ( x R y  ->  ( x R z  \/  z R y ) ) )  <-> 
( R  Or  A  ->  ( B R y  ->  ( B R z  \/  z R y ) ) ) ) )
6 breq2 3797 . . . . 5  |-  ( y  =  C  ->  ( B R y  <->  B R C ) )
7 breq2 3797 . . . . . 6  |-  ( y  =  C  ->  (
z R y  <->  z R C ) )
87orbi2d 737 . . . . 5  |-  ( y  =  C  ->  (
( B R z  \/  z R y )  <->  ( B R z  \/  z R C ) ) )
96, 8imbi12d 232 . . . 4  |-  ( y  =  C  ->  (
( B R y  ->  ( B R z  \/  z R y ) )  <->  ( B R C  ->  ( B R z  \/  z R C ) ) ) )
109imbi2d 228 . . 3  |-  ( y  =  C  ->  (
( R  Or  A  ->  ( B R y  ->  ( B R z  \/  z R y ) ) )  <-> 
( R  Or  A  ->  ( B R C  ->  ( B R z  \/  z R C ) ) ) ) )
11 breq2 3797 . . . . . 6  |-  ( z  =  D  ->  ( B R z  <->  B R D ) )
12 breq1 3796 . . . . . 6  |-  ( z  =  D  ->  (
z R C  <->  D R C ) )
1311, 12orbi12d 740 . . . . 5  |-  ( z  =  D  ->  (
( B R z  \/  z R C )  <->  ( B R D  \/  D R C ) ) )
1413imbi2d 228 . . . 4  |-  ( z  =  D  ->  (
( B R C  ->  ( B R z  \/  z R C ) )  <->  ( B R C  ->  ( B R D  \/  D R C ) ) ) )
1514imbi2d 228 . . 3  |-  ( z  =  D  ->  (
( R  Or  A  ->  ( B R C  ->  ( B R z  \/  z R C ) ) )  <-> 
( R  Or  A  ->  ( B R C  ->  ( B R D  \/  D R C ) ) ) ) )
16 df-iso 4060 . . . . 5  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
17 3anass 924 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  <->  ( x  e.  A  /\  ( y  e.  A  /\  z  e.  A
) ) )
18 rsp 2412 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
x  e.  A  ->  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) ) )
19 rsp2 2414 . . . . . . . . 9  |-  ( A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
( y  e.  A  /\  z  e.  A
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
2018, 19syl6 33 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
x  e.  A  -> 
( ( y  e.  A  /\  z  e.  A )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) ) )
2120impd 251 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
( x  e.  A  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
2217, 21syl5bi 150 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
2322adantl 271 . . . . 5  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )  -> 
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
2416, 23sylbi 119 . . . 4  |-  ( R  Or  A  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
2524com12 30 . . 3  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( R  Or  A  ->  ( x R y  ->  ( x R z  \/  z R y ) ) ) )
265, 10, 15, 25vtocl3ga 2669 . 2  |-  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A )  ->  ( R  Or  A  ->  ( B R C  ->  ( B R D  \/  D R C ) ) ) )
2726impcom 123 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( B R C  ->  ( B R D  \/  D R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 662    /\ w3a 920    = wceq 1285    e. wcel 1434   A.wral 2349   class class class wbr 3793    Po wpo 4057    Or wor 4058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-un 2978  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-iso 4060
This theorem is referenced by:  sotri2  4752  sotri3  4753  suplub2ti  6473  addextpr  6873  cauappcvgprlemloc  6904  caucvgprlemloc  6927  caucvgprprlemloc  6955  caucvgprprlemaddq  6960  ltsosr  7003  axpre-ltwlin  7111  xrlelttr  8952  xrltletr  8953  xrletr  8954
  Copyright terms: Public domain W3C validator