ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemloc Unicode version

Theorem cauappcvgprlemloc 6808
Description: Lemma for cauappcvgpr 6818. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemloc  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemloc
Dummy variables  f  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 6565 . . . . 5  |-  ( s 
<Q  r  ->  E. y  e.  Q.  ( s  +Q  y )  =  r )
21adantl 266 . . . 4  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  E. y  e.  Q.  ( s  +Q  y )  =  r )
3 subhalfnqq 6570 . . . . . 6  |-  ( y  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  y
)
43ad2antrl 467 . . . . 5  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  E. x  e.  Q.  ( x  +Q  x
)  <Q  y )
5 simprr 492 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
x  +Q  x ) 
<Q  y )
6 simplrl 495 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  s  e.  Q. )
76adantr 265 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  s  e.  Q. )
87adantr 265 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  s  e.  Q. )
9 ltanqi 6558 . . . . . . . . 9  |-  ( ( ( x  +Q  x
)  <Q  y  /\  s  e.  Q. )  ->  (
s  +Q  ( x  +Q  x ) ) 
<Q  ( s  +Q  y
) )
105, 8, 9syl2anc 397 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  ( x  +Q  x ) ) 
<Q  ( s  +Q  y
) )
11 simplrr 496 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  y )  =  r )
1210, 11breqtrd 3816 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  ( x  +Q  x ) ) 
<Q  r )
13 simprl 491 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  x  e.  Q. )
14 addclnq 6531 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  x  e.  Q. )  ->  ( x  +Q  x
)  e.  Q. )
1513, 13, 14syl2anc 397 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
x  +Q  x )  e.  Q. )
16 addclnq 6531 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  ( x  +Q  x
)  e.  Q. )  ->  ( s  +Q  (
x  +Q  x ) )  e.  Q. )
178, 15, 16syl2anc 397 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  ( x  +Q  x ) )  e.  Q. )
18 simplrr 496 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  r  e.  Q. )
1918adantr 265 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  r  e.  Q. )
2019adantr 265 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  r  e.  Q. )
21 cauappcvgpr.f . . . . . . . . . . 11  |-  ( ph  ->  F : Q. --> Q. )
2221ad4antr 471 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  F : Q. --> Q. )
2322, 13ffvelrnd 5331 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  ( F `  x )  e.  Q. )
24 addclnq 6531 . . . . . . . . 9  |-  ( ( ( F `  x
)  e.  Q.  /\  x  e.  Q. )  ->  ( ( F `  x )  +Q  x
)  e.  Q. )
2523, 13, 24syl2anc 397 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( F `  x
)  +Q  x )  e.  Q. )
26 ltsonq 6554 . . . . . . . . 9  |-  <Q  Or  Q.
27 sowlin 4085 . . . . . . . . 9  |-  ( ( 
<Q  Or  Q.  /\  (
( s  +Q  (
x  +Q  x ) )  e.  Q.  /\  r  e.  Q.  /\  (
( F `  x
)  +Q  x )  e.  Q. ) )  ->  ( ( s  +Q  ( x  +Q  x ) )  <Q 
r  ->  ( (
s  +Q  ( x  +Q  x ) ) 
<Q  ( ( F `  x )  +Q  x
)  \/  ( ( F `  x )  +Q  x )  <Q 
r ) ) )
2826, 27mpan 408 . . . . . . . 8  |-  ( ( ( s  +Q  (
x  +Q  x ) )  e.  Q.  /\  r  e.  Q.  /\  (
( F `  x
)  +Q  x )  e.  Q. )  -> 
( ( s  +Q  ( x  +Q  x
) )  <Q  r  ->  ( ( s  +Q  ( x  +Q  x
) )  <Q  (
( F `  x
)  +Q  x )  \/  ( ( F `
 x )  +Q  x )  <Q  r
) ) )
2917, 20, 25, 28syl3anc 1146 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( s  +Q  (
x  +Q  x ) )  <Q  r  ->  ( ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x )  \/  (
( F `  x
)  +Q  x ) 
<Q  r ) ) )
3012, 29mpd 13 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x )  \/  (
( F `  x
)  +Q  x ) 
<Q  r ) )
318adantr 265 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
s  e.  Q. )
32 simplrl 495 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  ->  x  e.  Q. )
33 simpr 107 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )
34 addassnqg 6538 . . . . . . . . . . . . . 14  |-  ( ( s  e.  Q.  /\  x  e.  Q.  /\  x  e.  Q. )  ->  (
( s  +Q  x
)  +Q  x )  =  ( s  +Q  ( x  +Q  x
) ) )
3531, 32, 32, 34syl3anc 1146 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( ( s  +Q  x )  +Q  x
)  =  ( s  +Q  ( x  +Q  x ) ) )
3635breq1d 3802 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( ( ( s  +Q  x )  +Q  x )  <Q  (
( F `  x
)  +Q  x )  <-> 
( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) ) )
3733, 36mpbird 160 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( ( s  +Q  x )  +Q  x
)  <Q  ( ( F `
 x )  +Q  x ) )
38 ltanqg 6556 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3938adantl 266 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
s  +Q  ( x  +Q  x ) ) 
<Q  ( ( F `  x )  +Q  x
) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
40 addclnq 6531 . . . . . . . . . . . . 13  |-  ( ( s  e.  Q.  /\  x  e.  Q. )  ->  ( s  +Q  x
)  e.  Q. )
4131, 32, 40syl2anc 397 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( s  +Q  x
)  e.  Q. )
4223adantr 265 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( F `  x
)  e.  Q. )
43 addcomnqg 6537 . . . . . . . . . . . . 13  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4443adantl 266 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
s  +Q  ( x  +Q  x ) ) 
<Q  ( ( F `  x )  +Q  x
) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
4539, 41, 42, 32, 44caovord2d 5698 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( ( s  +Q  x )  <Q  ( F `  x )  <->  ( ( s  +Q  x
)  +Q  x ) 
<Q  ( ( F `  x )  +Q  x
) ) )
4637, 45mpbird 160 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
( s  +Q  x
)  <Q  ( F `  x ) )
47 oveq2 5548 . . . . . . . . . . . 12  |-  ( q  =  x  ->  (
s  +Q  q )  =  ( s  +Q  x ) )
48 fveq2 5206 . . . . . . . . . . . 12  |-  ( q  =  x  ->  ( F `  q )  =  ( F `  x ) )
4947, 48breq12d 3805 . . . . . . . . . . 11  |-  ( q  =  x  ->  (
( s  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  x )  <Q  ( F `  x )
) )
5049rspcev 2673 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  ( s  +Q  x
)  <Q  ( F `  x ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
5132, 46, 50syl2anc 397 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
52 oveq1 5547 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
5352breq1d 3802 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
5453rexbidv 2344 . . . . . . . . . 10  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
55 cauappcvgpr.lim . . . . . . . . . . . 12  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
5655fveq2i 5209 . . . . . . . . . . 11  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
57 nqex 6519 . . . . . . . . . . . . 13  |-  Q.  e.  _V
5857rabex 3929 . . . . . . . . . . . 12  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
5957rabex 3929 . . . . . . . . . . . 12  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
6058, 59op1st 5801 . . . . . . . . . . 11  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
6156, 60eqtri 2076 . . . . . . . . . 10  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
6254, 61elrab2 2723 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
6331, 51, 62sylanbrc 402 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x ) )  -> 
s  e.  ( 1st `  L ) )
6463ex 112 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( s  +Q  (
x  +Q  x ) )  <Q  ( ( F `  x )  +Q  x )  ->  s  e.  ( 1st `  L
) ) )
6520adantr 265 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( ( F `  x )  +Q  x
)  <Q  r )  -> 
r  e.  Q. )
66 id 19 . . . . . . . . . . . . 13  |-  ( q  =  x  ->  q  =  x )
6748, 66oveq12d 5558 . . . . . . . . . . . 12  |-  ( q  =  x  ->  (
( F `  q
)  +Q  q )  =  ( ( F `
 x )  +Q  x ) )
6867breq1d 3802 . . . . . . . . . . 11  |-  ( q  =  x  ->  (
( ( F `  q )  +Q  q
)  <Q  r  <->  ( ( F `  x )  +Q  x )  <Q  r
) )
6968rspcev 2673 . . . . . . . . . 10  |-  ( ( x  e.  Q.  /\  ( ( F `  x )  +Q  x
)  <Q  r )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  r )
7013, 69sylan 271 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( ( F `  x )  +Q  x
)  <Q  r )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  r )
71 breq2 3796 . . . . . . . . . . 11  |-  ( u  =  r  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  r
) )
7271rexbidv 2344 . . . . . . . . . 10  |-  ( u  =  r  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  r
) )
7355fveq2i 5209 . . . . . . . . . . 11  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
7458, 59op2nd 5802 . . . . . . . . . . 11  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
7573, 74eqtri 2076 . . . . . . . . . 10  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
7672, 75elrab2 2723 . . . . . . . . 9  |-  ( r  e.  ( 2nd `  L
)  <->  ( r  e. 
Q.  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  r
) )
7765, 70, 76sylanbrc 402 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( ( F `  x )  +Q  x
)  <Q  r )  -> 
r  e.  ( 2nd `  L ) )
7877ex 112 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( ( F `  x )  +Q  x
)  <Q  r  ->  r  e.  ( 2nd `  L
) ) )
7964, 78orim12d 710 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
( ( s  +Q  ( x  +Q  x
) )  <Q  (
( F `  x
)  +Q  x )  \/  ( ( F `
 x )  +Q  x )  <Q  r
)  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) ) )
8030, 79mpd 13 . . . . 5  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) )
814, 80rexlimddv 2454 . . . 4  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) )
822, 81rexlimddv 2454 . . 3  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) )
8382ex 112 . 2  |-  ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  -> 
( s  <Q  r  ->  ( s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
8483ralrimivva 2418 1  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639    /\ w3a 896    = wceq 1259    e. wcel 1409   A.wral 2323   E.wrex 2324   {crab 2327   <.cop 3406   class class class wbr 3792    Or wor 4060   -->wf 4926   ` cfv 4930  (class class class)co 5540   1stc1st 5793   2ndc2nd 5794   Q.cnq 6436    +Q cplq 6438    <Q cltq 6441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509
This theorem is referenced by:  cauappcvgprlemcl  6809
  Copyright terms: Public domain W3C validator