ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp1 Unicode version

Theorem ssxp1 4975
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem ssxp1
StepHypRef Expression
1 dmxpm 4759 . . . . . 6  |-  ( E. x  x  e.  C  ->  dom  ( A  X.  C )  =  A )
21adantr 274 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  dom  ( A  X.  C
)  =  A )
3 dmss 4738 . . . . . 6  |-  ( ( A  X.  C ) 
C_  ( B  X.  C )  ->  dom  ( A  X.  C
)  C_  dom  ( B  X.  C ) )
43adantl 275 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  dom  ( A  X.  C
)  C_  dom  ( B  X.  C ) )
52, 4eqsstrrd 3134 . . . 4  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  A  C_ 
dom  ( B  X.  C ) )
6 dmxpss 4969 . . . 4  |-  dom  ( B  X.  C )  C_  B
75, 6sstrdi 3109 . . 3  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  A  C_  B )
87ex 114 . 2  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  ->  A  C_  B ) )
9 xpss1 4649 . 2  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )
108, 9impbid1 141 1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480    C_ wss 3071    X. cxp 4537   dom cdm 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-dm 4549
This theorem is referenced by:  xpcan2m  4979
  Copyright terms: Public domain W3C validator