![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssxp1 | GIF version |
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
ssxp1 | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmxpm 4583 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → dom (𝐴 × 𝐶) = 𝐴) | |
2 | 1 | adantr 270 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) = 𝐴) |
3 | dmss 4562 | . . . . . 6 ⊢ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶)) | |
4 | 3 | adantl 271 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶)) |
5 | 2, 4 | eqsstr3d 3035 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ dom (𝐵 × 𝐶)) |
6 | dmxpss 4783 | . . . 4 ⊢ dom (𝐵 × 𝐶) ⊆ 𝐵 | |
7 | 5, 6 | syl6ss 3012 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ 𝐵) |
8 | 7 | ex 113 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → 𝐴 ⊆ 𝐵)) |
9 | xpss1 4476 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
10 | 8, 9 | impbid1 140 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∃wex 1422 ∈ wcel 1434 ⊆ wss 2974 × cxp 4369 dom cdm 4371 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-br 3794 df-opab 3848 df-xp 4377 df-dm 4381 |
This theorem is referenced by: xpcan2m 4791 |
Copyright terms: Public domain | W3C validator |