![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid1 | Unicode version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
impbid1.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbid1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | impbid1.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | impbid 127 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: impbid2 141 iba 294 ibar 295 pm4.81dc 848 pm5.63dc 888 pm4.83dc 893 pm5.71dc 903 19.33b2 1561 19.9t 1574 sb4b 1756 a16gb 1787 euor2 2000 eupickbi 2024 ceqsalg 2628 eqvincg 2720 ddifstab 3105 csbprc 3296 undif4 3313 sssnm 3554 sneqbg 3563 opthpr 3572 elpwuni 3770 eusv2i 4213 reusv3 4218 iunpw 4237 suc11g 4308 xpid11m 4585 ssxpbm 4786 ssxp1 4787 ssxp2 4788 xp11m 4789 2elresin 5041 mpteqb 5293 f1fveq 5443 f1elima 5444 f1imass 5445 fliftf 5470 nnsucuniel 6139 iserd 6198 ecopovtrn 6269 ecopover 6270 ecopovtrng 6272 ecopoverg 6273 fopwdom 6380 addcanpig 6586 mulcanpig 6587 srpospr 7021 readdcan 7315 cnegexlem1 7350 addcan 7355 addcan2 7356 neg11 7426 negreb 7440 add20 7645 cru 7769 mulcanapd 7818 uz11 8722 eqreznegel 8780 lbzbi 8782 xneg11 8977 elioc2 9035 elico2 9036 elicc2 9037 fzopth 9155 2ffzeq 9228 flqidz 9368 addmodlteq 9480 frec2uzrand 9487 expcan 9741 nn0opthd 9746 fz1eqb 9815 cj11 9930 sqrt0 10028 recan 10133 0dvds 10360 dvds1 10398 alzdvds 10399 nn0enne 10446 nn0oddm1d2 10453 nnoddm1d2 10454 divalgmod 10471 gcdeq0 10512 algcvgblem 10575 prmexpb 10674 bj-peano4 10908 bj-nn0sucALT 10931 |
Copyright terms: Public domain | W3C validator |