![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylnib | Unicode version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylnib.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylnib |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylnib.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbid 630 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: sylnibr 635 inssdif0im 3327 undifexmid 3984 ordtriexmidlem2 4292 dmsn0el 4840 fidifsnen 6426 ltpopr 6899 caucvgprprlemnbj 6997 xrlttri3 9000 fzneuz 9246 |
Copyright terms: Public domain | W3C validator |