Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpo Unicode version

Theorem trilpo 13239
Description: Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones.

Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 13237 (which means the sequence contains a zero), trilpolemeq1 13236 (which means the sequence is all ones), and trilpolemgt1 13235 (which is not possible). (Contributed by Jim Kingdon, 23-Aug-2023.)

Assertion
Ref Expression
trilpo  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  om  e. Omni )
Distinct variable group:    x, y

Proof of Theorem trilpo
Dummy variables  f  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6564 . . . . . 6  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
21adantl 275 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  f : NN --> { 0 ,  1 } )
3 oveq2 5782 . . . . . . . 8  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
43oveq2d 5790 . . . . . . 7  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
5 fveq2 5421 . . . . . . 7  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
64, 5oveq12d 5792 . . . . . 6  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( f `  j
) ) )
76cbvsumv 11133 . . . . 5  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( f `
 j ) )
82, 7trilpolemcl 13233 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR )
9 1red 7784 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  1  e.  RR )
10 simpl 108 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
11 breq1 3932 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  <  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  <  y )
)
12 eqeq1 2146 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  =  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  y ) )
13 breq2 3933 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( y  <  x  <->  y  <  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) ) )
1411, 12, 133orbi123d 1289 . . . . . . 7  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( (
x  <  y  \/  x  =  y  \/  y  <  x )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  y  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  \/  y  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) ) ) )
15 breq2 3933 . . . . . . . 8  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1
) )
16 eqeq2 2149 . . . . . . . 8  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  1 ) )
17 breq1 3932 . . . . . . . 8  |-  ( y  =  1  ->  (
y  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <->  1  <  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) ) )
1815, 16, 173orbi123d 1289 . . . . . . 7  |-  ( y  =  1  ->  (
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  <  y  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  \/  y  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  1  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) ) ) )
1914, 18rspc2va 2803 . . . . . 6  |-  ( ( ( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR  /\  1  e.  RR )  /\  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )  ->  ( sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1  \/  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) ) )
208, 9, 10, 19syl21anc 1215 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  ( sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1  \/  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) ) )
212, 7, 20trilpolemres 13238 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
2221ralrimiva 2505 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
23 nnex 8729 . . . 4  |-  NN  e.  _V
24 isomninn 13229 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. Omni 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) ) )
2523, 24ax-mp 5 . . 3  |-  ( NN  e. Omni 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
2622, 25sylibr 133 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  NN  e. Omni )
27 nnenom 10210 . . 3  |-  NN  ~~  om
28 enomni 7011 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. Omni 
<->  om  e. Omni ) )
2927, 28ax-mp 5 . 2  |-  ( NN  e. Omni 
<->  om  e. Omni )
3026, 29sylib 121 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  om  e. Omni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    \/ w3o 961    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686   {cpr 3528   class class class wbr 3929   omcom 4504   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^m cmap 6542    ~~ cen 6632  Omnicomni 7004   RRcr 7622   0cc0 7623   1c1 7624    x. cmul 7628    < clt 7803    / cdiv 8435   NNcn 8723   2c2 8774   ^cexp 10295   sum_csu 11125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-2o 6314  df-oadd 6317  df-er 6429  df-map 6544  df-en 6635  df-dom 6636  df-fin 6637  df-omni 7006  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-n0 8981  df-z 9058  df-uz 9330  df-q 9415  df-rp 9445  df-ico 9680  df-fz 9794  df-fzo 9923  df-seqfrec 10222  df-exp 10296  df-ihash 10525  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-clim 11051  df-sumdc 11126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator