ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txss12 Unicode version

Theorem txss12 12438
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txss12  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )

Proof of Theorem txss12
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2139 . . . 4  |-  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  =  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )
21txbasex 12429 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V )
3 resmpo 5869 . . . . . 6  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C
) )  =  ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) ) )
4 resss 4843 . . . . . 6  |-  ( ( x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) )
53, 4eqsstrrdi 3150 . . . . 5  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
65adantl 275 . . . 4  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
7 rnss 4769 . . . 4  |-  ( ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
86, 7syl 14 . . 3  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
9 tgss 12235 . . 3  |-  ( ( ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V  /\  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) 
C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) )  ->  ( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) ) )  C_  ( topGen `  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
102, 8, 9syl2an2r 584 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) )  C_  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
11 ssexg 4067 . . . . 5  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
12 ssexg 4067 . . . . 5  |-  ( ( C  C_  D  /\  D  e.  W )  ->  C  e.  _V )
13 eqid 2139 . . . . . 6  |-  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  =  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )
1413txval 12427 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1511, 12, 14syl2an 287 . . . 4  |-  ( ( ( A  C_  B  /\  B  e.  V
)  /\  ( C  C_  D  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1615an4s 577 . . 3  |-  ( ( ( A  C_  B  /\  C  C_  D )  /\  ( B  e.  V  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1716ancoms 266 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
181txval 12427 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
1918adantr 274 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
2010, 17, 193sstr4d 3142 1  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    C_ wss 3071    X. cxp 4537   ran crn 4540    |` cres 4541   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   topGenctg 12138    tX ctx 12424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-topgen 12144  df-tx 12425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator