ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissb Unicode version

Theorem unissb 3638
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
unissb  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem unissb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3611 . . . . . 6  |-  ( y  e.  U. A  <->  E. x
( y  e.  x  /\  x  e.  A
) )
21imbi1i 231 . . . . 5  |-  ( ( y  e.  U. A  ->  y  e.  B )  <-> 
( E. x ( y  e.  x  /\  x  e.  A )  ->  y  e.  B ) )
3 19.23v 1779 . . . . 5  |-  ( A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  ( E. x ( y  e.  x  /\  x  e.  A )  ->  y  e.  B ) )
42, 3bitr4i 180 . . . 4  |-  ( ( y  e.  U. A  ->  y  e.  B )  <->  A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B ) )
54albii 1375 . . 3  |-  ( A. y ( y  e. 
U. A  ->  y  e.  B )  <->  A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B ) )
6 alcom 1383 . . . 4  |-  ( A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  A. x A. y ( ( y  e.  x  /\  x  e.  A
)  ->  y  e.  B ) )
7 19.21v 1769 . . . . . 6  |-  ( A. y ( x  e.  A  ->  ( y  e.  x  ->  y  e.  B ) )  <->  ( x  e.  A  ->  A. y
( y  e.  x  ->  y  e.  B ) ) )
8 impexp 254 . . . . . . . 8  |-  ( ( ( y  e.  x  /\  x  e.  A
)  ->  y  e.  B )  <->  ( y  e.  x  ->  ( x  e.  A  ->  y  e.  B ) ) )
9 bi2.04 241 . . . . . . . 8  |-  ( ( y  e.  x  -> 
( x  e.  A  ->  y  e.  B ) )  <->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  B ) ) )
108, 9bitri 177 . . . . . . 7  |-  ( ( ( y  e.  x  /\  x  e.  A
)  ->  y  e.  B )  <->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  B ) ) )
1110albii 1375 . . . . . 6  |-  ( A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  A. y
( x  e.  A  ->  ( y  e.  x  ->  y  e.  B ) ) )
12 dfss2 2962 . . . . . . 7  |-  ( x 
C_  B  <->  A. y
( y  e.  x  ->  y  e.  B ) )
1312imbi2i 219 . . . . . 6  |-  ( ( x  e.  A  ->  x  C_  B )  <->  ( x  e.  A  ->  A. y
( y  e.  x  ->  y  e.  B ) ) )
147, 11, 133bitr4i 205 . . . . 5  |-  ( A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  ( x  e.  A  ->  x  C_  B ) )
1514albii 1375 . . . 4  |-  ( A. x A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  A. x ( x  e.  A  ->  x  C_  B
) )
166, 15bitri 177 . . 3  |-  ( A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  A. x ( x  e.  A  ->  x  C_  B
) )
175, 16bitri 177 . 2  |-  ( A. y ( y  e. 
U. A  ->  y  e.  B )  <->  A. x
( x  e.  A  ->  x  C_  B )
)
18 dfss2 2962 . 2  |-  ( U. A  C_  B  <->  A. y
( y  e.  U. A  ->  y  e.  B
) )
19 df-ral 2328 . 2  |-  ( A. x  e.  A  x  C_  B  <->  A. x ( x  e.  A  ->  x  C_  B ) )
2017, 18, 193bitr4i 205 1  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257   E.wex 1397    e. wcel 1409   A.wral 2323    C_ wss 2945   U.cuni 3608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-in 2952  df-ss 2959  df-uni 3609
This theorem is referenced by:  uniss2  3639  ssunieq  3641  sspwuni  3767  pwssb  3768  bm2.5ii  4250
  Copyright terms: Public domain W3C validator