ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0lenn0nn0 Unicode version

Theorem xnn0lenn0nn0 9648
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0  |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 9042 . . 3  |-  ( M  e. NN0* 
<->  ( M  e.  NN0  \/  M  = +oo )
)
2 2a1 25 . . . 4  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
3 breq1 3932 . . . . . . 7  |-  ( M  = +oo  ->  ( M  <_  N  <-> +oo  <_  N
) )
43adantr 274 . . . . . 6  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( M  <_  N  <-> +oo 
<_  N ) )
5 nn0re 8986 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
65rexrd 7815 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e. 
RR* )
7 xgepnf 9599 . . . . . . . . 9  |-  ( N  e.  RR*  ->  ( +oo  <_  N  <->  N  = +oo ) )
86, 7syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( +oo  <_  N  <->  N  = +oo ) )
9 pnfnre 7807 . . . . . . . . 9  |- +oo  e/  RR
10 eleq1 2202 . . . . . . . . . . 11  |-  ( N  = +oo  ->  ( N  e.  NN0  <-> +oo  e.  NN0 ) )
11 nn0re 8986 . . . . . . . . . . . 12  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
12 elnelall 2415 . . . . . . . . . . . 12  |-  ( +oo  e.  RR  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) )
1311, 12syl 14 . . . . . . . . . . 11  |-  ( +oo  e.  NN0  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) )
1410, 13syl6bi 162 . . . . . . . . . 10  |-  ( N  = +oo  ->  ( N  e.  NN0  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) ) )
1514com13 80 . . . . . . . . 9  |-  ( +oo  e/  RR  ->  ( N  e.  NN0  ->  ( N  = +oo  ->  M  e.  NN0 ) ) )
169, 15ax-mp 5 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  = +oo  ->  M  e.  NN0 ) )
178, 16sylbid 149 . . . . . . 7  |-  ( N  e.  NN0  ->  ( +oo  <_  N  ->  M  e.  NN0 ) )
1817adantl 275 . . . . . 6  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( +oo  <_  N  ->  M  e.  NN0 ) )
194, 18sylbid 149 . . . . 5  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( M  <_  N  ->  M  e.  NN0 )
)
2019ex 114 . . . 4  |-  ( M  = +oo  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
212, 20jaoi 705 . . 3  |-  ( ( M  e.  NN0  \/  M  = +oo )  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 )
) )
221, 21sylbi 120 . 2  |-  ( M  e. NN0*  ->  ( N  e. 
NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
23223imp 1175 1  |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480    e/ wnel 2403   class class class wbr 3929   RRcr 7619   +oocpnf 7797   RR*cxr 7799    <_ cle 7801   NN0cn0 8977  NN0*cxnn0 9040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-rnegex 7729  ax-pre-ltirr 7732
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-inn 8721  df-n0 8978  df-xnn0 9041
This theorem is referenced by:  xnn0le2is012  9649
  Copyright terms: Public domain W3C validator