![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version |
Description: Two falsehoods are equivalent (deduction rule). (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | pm2.21d 582 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
4 | 3 | pm2.21d 582 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 2, 4 | impbid 127 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 ax-in2 578 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm5.21ni 652 bianfd 890 abvor0dc 3276 nn0eln0 4367 nntri3 6141 fin0 6419 xrlttri3 8948 nltpnft 8960 ngtmnft 8961 xrrebnd 8962 sizenncl 9820 mod2eq1n2dvds 10423 m1exp1 10445 |
Copyright terms: Public domain | W3C validator |