ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axltadd GIF version

Theorem axltadd 7841
Description: Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-ltadd 7743 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axltadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))

Proof of Theorem axltadd
StepHypRef Expression
1 ax-pre-ltadd 7743 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
2 ltxrlt 7837 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
323adant3 1001 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵𝐴 < 𝐵))
4 readdcl 7753 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 + 𝐴) ∈ ℝ)
5 readdcl 7753 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
6 ltxrlt 7837 . . . . 5 (((𝐶 + 𝐴) ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
74, 5, 6syl2an 287 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
873impdi 1271 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
983coml 1188 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) < (𝐶 + 𝐵) ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
101, 3, 93imtr4d 202 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7626   + caddc 7630   < cltrr 7631   < clt 7807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-addrcl 7724  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-pnf 7809  df-mnf 7810  df-ltxr 7812
This theorem is referenced by:  ltadd2  8188  nnge1  8750  ltoddhalfle  11597
  Copyright terms: Public domain W3C validator