ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulgt0 GIF version

Theorem axmulgt0 7149
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7058 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axmulgt0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))

Proof of Theorem axmulgt0
StepHypRef Expression
1 ax-pre-mulgt0 7058 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
2 0re 7084 . . . 4 0 ∈ ℝ
3 ltxrlt 7143 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 < 𝐴))
42, 3mpan 408 . . 3 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < 𝐴))
5 ltxrlt 7143 . . . 4 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ 0 < 𝐵))
62, 5mpan 408 . . 3 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ 0 < 𝐵))
74, 6bi2anan9 548 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) ↔ (0 < 𝐴 ∧ 0 < 𝐵)))
8 remulcl 7066 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
9 ltxrlt 7143 . . 3 ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐴 · 𝐵)))
102, 8, 9sylancr 399 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐴 · 𝐵)))
111, 7, 103imtr4d 196 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wcel 1409   class class class wbr 3791  (class class class)co 5539  cr 6945  0cc0 6946   < cltrr 6950   · cmul 6951   < clt 7118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-cnex 7032  ax-resscn 7033  ax-1re 7035  ax-addrcl 7038  ax-mulrcl 7040  ax-rnegex 7050  ax-pre-mulgt0 7058
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-xp 4378  df-pnf 7120  df-mnf 7121  df-ltxr 7123
This theorem is referenced by:  mulgt0  7151  mulgt0i  7185
  Copyright terms: Public domain W3C validator